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Squeezing in the Self-Pulsing Domain
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We study analytically the squeezing spectrum of second-harmonic generation in the self-pulsing re-
gime. We prove that squeezing is still defined in the presence of a limit cycle. When the input field
exceeds the self-pulsing threshold, the intensity spectrum remains smaller than the shot-noise limit in a
frequency domain around the self-pulsing frequency.
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It has been known for some time that squeezing can be
enhanced near a bifurcation point. ' This property has
been recently demonstrated for a class of nonlinear opti-
cal systems and is especially relevant for parametric
processes inside a resonant cavity. For instance, in sub-
harmonic generation on resonance, perfect squeezing is
obtained at the bifurcation point corresponding to the
transition from the amplifier regime to the oscillator
regime. ' ' On both sides of the bifurcation point, the
squeezing is large, though of a diA'erent nature. Below
the bifurcation, a squeezed vacuum is produced, ' ' '

while above the bifurcation, the subharmonic field
displays squeezed phase fluctuations. ' In the case of
subharmonic generation, the bifurcation point corre-
sponds to a transition between steady states. Both re-
gimes are characterized by time-independent intensities.
In second-harmonic generation (SHG), a different kind
of bifurcation occurs (known as Hopf bifurcation),
which connects a steady state to a time-periodic solu-
tion. It has been shown that perfect intensity squeezing
can be reached when approaching the Hopf bifurcation
from below. ' '

Most nonlinear optical systems in resonant cavities
display such Hopf bifurcations. The purpose of this
Letter is to calculate analytically the squeezing spectrum
above a Hopf bifurcation, in the self-pulsing regime. To
our knowledge, no theoretical result has been published
on squeezing of nonsteady states (such as stable periodic
or quasiperiodic solutions) with constant input. In this
line of temporal problems, the parametric amplifier sub-
mitted to a periodically pulsed input field has been con-
sidered by Yurke et al. and it was demonstrated that
squeezing can still be defined. This has been confirmed
experimentally first by Slusher eI, al. The problem that
we analyze in this Letter is diA'erent since the input field
amplitude remains constant while both output electric
fields display stable spontaneous amplitude and phase
modulations. Thus it is nonlinear dynamics which is the
cause of the time periodicity in the response of the sys-

tern. In this first analytic approach to the problem, we
shall consider SHG because its analytical solution of the
deterministic problem in the self-pulsing regime is known
and simple to handle.

There exist two main methods for calculating the
squeezing spectra of nonlinear optical systems. The first
one is an extension by Collett and Gardiner of the
Iluctuation-dissipation theorem for nonlinear dissipative
quantum systems. It was used by Collett and Walls' '
who published the first theoretical derivation of the
squeezing spectrum in SHG below the Hopf bifurcation.
The second method is the semiclassical method of Rey-
naud and co-workers. ' It leads to evolution equations
for the field fluctuations linearized around a solution of
the deterministic semiclassical equations. The fields out-
side the cavity are expressed in terms of the fields inside
the cavity, using classical reflection-transmission equa-
tions. This allows the determination of the output Auc-
tuations by regarding all Iluctuations as driven by classi-
cal random fields incident to the mirrors. Although all
previous applications of this method involved fluctuations
around steady states, it is easily generalized to deal with
fluctuations around a periodic solution, as long as the
fluctuations remain small compared to the mean fields.
We will use this method to analyze the squeezing spec-
trum in SHG in the self-pulsing domain.

The semiclassical equations of SHG are

R ~

= —yR ~+R ~*R2+E, R2 = —R2 —R ~

for the scaled complex electric fields of the fundamental
mode (R~) and of the second harmonic (R2), with E be-
ing the scaled pump field and y the ratio of the two
cavity-field decay rates. For the sake of simplicity, we
shall only consider the good converter limit y 0. In
this limit the steady-state solutions R& =E' and R2= —E are stable for 0~E ~EH =—1. The critical
point EH is a Hopf bifurcation of the two field phases out
of which a stable periodic solution emerges. Near but
above the Hopf bifurcation, it has been proved that the
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solution takes the form 'p

1P

e

( ir+ —ir)+ 2 2ir~ —2ir+ ~o( 3)
1 —4i 1+4i 34

R2= —1+ie[(i —1)e"—(i+1)e "1+e e "— e "+ +O(e ),3 p;, 3 2;, 1

4i —1 4i +1 17

(2)

[R(z)] =N[E, [R(z)]j .
dz

(3)

To determine the squeezing spectrum using the semiclas-
sical method, ' we assume that a weak noise source
rt[6'a(z)'"] is added to the constant input field,

[E(.)l =[E]+qTB (.)'"1,

[E]= (E,O, O, O), T =diag(0, J2,0,42),
in the limit y 0, where T is the diagonal transmission
matrix through the mirrors and Irit «1. We denote by
[R(z)] the solution of the deterministic equation [Eq.
(3)1 obtained with the constant source [E] and by
[R(r)] the solution of the stochastic equation [Eq. (3)
when Eq. (4) is used]. We seek solutions of the form

[R(z)] = [R(z)]+~[~a(z)]+O(~'),

above the self-pulsing threshold, i.e., E ~ 1. The noise
vector inside the cavity satisfies the equation

d [Ba(z)]=A(z) [Ba(z)]+T[8'a(z)'"],
dz

S (p3, e) =Sp(p3)+e2S. ,2(rp)+O(e4),

Sp(tp) = (rp' —1) '/(r0' —2''+ 9)

where 0 & e«1 defines the neighborhood of the bifurca-
tion: E =EH+ —„e . The time z is scaled in such a way

t99 2 ~ ~ ~

that the solutions are 2' periodic: z = [1+—'„' e
+O(e )lt, where t is the reduced time appearing in Eqs.
(1).

Let [R(z)] be a vector whose components are Re(Ri),
Re(R2), Im(Ri), and Im(R2), respectively. Equation
(I) can be written formally as

[~a(.)'"'1 = T[~a(.)1 —[~ (.) '"1, (7)

and we assume that the input noises are Gaussian white
noises. From Eq. (5), we obtain

[R(z)'"'1 = [R(z) '"'1+q[aa(z) '"']+o(q'),

where [R(r)'"'1 =[R(r)]J2 in the limit y 0. With
these solutions, we define the intensity of the second-
harmonic field,

I(z) = IR2(z)'"'I' = IR2(z)'"'I'+ nor(z) .

The squeezing spectrum is then calculated in the fre-
quency domain. The amplitude spectrum outside the
cavity is defined as S,(ro) —= IM(ro) I /4, with M(z)
=6'R2(z)+c.c. being the correction to the average am-
plitude. The spectrum is defined in this way so that the
shot-noise level is equal to unity. Both [Ba(co)'"'l and
[R(rp)'"'] are expanded in powers of e since the periodic
solutions (2) which we use are also expanded in such
series. Note that in Eq. (7), [Ba(r)'"] is independent of
t. . The amplitude-squeezing spectrum has therefore been
calculated perturbatively:

where the time-dependent matrix A (z) is defined by

N tE, [R(z)]]
=N [E,[R(z)l]+ riA [[R(z)]]Ba(z)]+0(rt') .

The noises outside the cavity are obtained using the
reflection-transmission relations

16 11016+4998co —6881 co +3870co —852m +89co'S, 2(rp) =
17 (tp 2) 2(rp+ 2) 2(rp4 2' 2+ 9)2' 2

(10)

The functions Sp(N) and S, 2(ro) are displayed in Figs.
1 and 2, respectively. The function Sp(co) is the spec-
trum at threshold already known from below-threshold
calculations. ' ' lt lies entirely below the shot-noise lim-
it and vanishes for co = 1. The correction S, 2(rp)
diverges for m =0 and 2, and vanishes at infinity. Diver-
gences at all harmonics of the self-pulsing frequency are
expected in the squeezing spectra of a periodic solution.
The interesting feature, however, is that we do not find
all of these singularities in both the amplitude and the
phase (imaginary part of the fiuctuations) spectra. On

t

the contrary, the amplitude spectrum displays diver-
gences only at even multiples of the self-pulsing frequen-
cy, whereas divergences at odd multiples of the self-
pulsing frequency will occur in the phase spectrum.
However, this separation is not expected to remain out of
resonance.

Let us now calculate the intensity-squeezing spectrum
that is the most easily measurable function in this prob-
lem. When dealing with time-dependent solutions, the
intensity- and the amplitude-squeezing spectra are no
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It should be pointed out that the frequency ro is relat-
ed to the time r and is therefore a function of e. The
frequency which is measured experimentally is 0 =@2'
& [1+ ~1 (E EH—)j. Figure 4 displays the variation of
the intensity noise spectrum as a function of 0/y2 and of
the pump intensity E when the self-pulsing threshold is
crossed. Apart from the large noise occurring around
the frequency m =2, the noise variation is smooth around
the bifurcation. As the correction S2(ro) is positive, the
squeezing is reduced for all frequencies. The best
squeezing still occurs in the vicinity of the self-pulsing
frequency and remains very good even far from thresh-
old.

In conclusion, we have shown that squeezing can still
be defined in a self-pulsing regime although a distinction
has to be made between intensity and amplitude spectra.
We have extended the analysis of the squeezing across a
steady bifurcation to the case of a Hopf bifurcation and
given an analytic expression for the quantum noise. The
principle of our calculation is by no means limited to
SHG but can be applied to other nonlinear systems
which also display Hopf bifurcations.
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