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A large-N expansion technique based on symplectic [Sp(N)] symmetry for frustrated magnetic sys-

tems is proposed and applied to the square-lattice quantum antiferromagnet with first-, second-, and
third-neighbor antiferromagnetic coupling. In addition to disordered states similar to those in unfrus-

trated systems, phases with incommensurate coplanar spin correlations and unconfined bosonic spinons
are found. The occurrence of "order from disorder" is discussed. Neither chirally ordered nor spin-
nematic states are found.

PACS numbers: 75. 10.Jm, 74.65.+n, 75.50.Ee

Recently, there has been much activity aimed at un-

derstanding quantum antiferromagnetism, in particular
states not having long-range order in the spins, especially
in two spatial dimensions and in frustrated systems.
Resonanting valence bonds' provide one way of looking
at such problems. Renormalization-group treatments
based on a nonlinear sigma (NLcr) model description of
the ordered phase indicate that a transition to a state
with no long-range order can occur in spatial dimensions
d & 1 when quantum Auctuations are strong enough.
Large-N techniques suggest ' that some unfrustrated
systems develop spin-Peierls order or a valence-bond-
solid (VBS) state when not Neel ordered, depending on

the value of the spin at each site. In frustrated systems,
magnetic order may be induced by quantum Iluctuations
when the classical system would have a degenerate
ground state ("order from disorder"). "Chiral" and
"spin-nematic" ' order are two proposals for states
without magnetic order. Numerical" and series' work

on a model with first- and second-neighbor coupling and

spin 2 suggests that the disordered state at intermediate

coupling has columnar spin-Peierls order as suggested by
the authors for unfrustrated systems.

In this paper we provide a systematic analytic tech-
nique for frustrated and doped antiferromagnets
(AFMs) by introducing a new large-N expansion based
on symplectic symmetry. The method is applied to
square-lattice models w ith first-, second-, and third-
neighbor antiferromagnetic coupling and phase diagrams
are obtained (see Figs. 1-3). The nature of the disor-
dered phases is explored via a mapping to lattice gauge
theories, which exhibit new behavior when incommensu-
rate spin correlations are present; in particular, uncon-
fined spin- —,

' bosonic spinons' are possible for all values
of the on-site spin. Exotic states ' are absent, at least in

the large-N limit.
Large-N methods based on the SU(N) generalization

of the SU(2) AFM have been successfully applied to
unfrustrated AFMs by exploiting the two-sublattice (la-
beled A, 8) structure of the model. "Spins" placed on
sublattice 2 form an irreducible representation of

SU(N), while those on 8 form the conjugate representa-
tion; this ensures both that a classical Neel state exists
and that it is possible to make an SU(N) singlet from a
pair of such sites. In particular, totally symmetric repre-
sentations can be formed by placing nb bosons created
by b;, (a=i, . . . , N) on sites i 6A and created in the
conjugate representation b~

' on sites j 6 8. The opera-
tor b;,b~.

' creates an SU(N) singlet pair of bosons (a
valence bond). The antiferromagnetic coupling
—(b;,b~')(b~b~p) is the analog of S;.S~ (plus a con-
stant) and tries to maximize the number of valence
bonds between the two sites. Sites on the same sub-
lattice may have the ferromagnetic coupling
—(b;,b,') (b,t&b,~); reversin. g the sign disfavors fer-
romagnetism rather than favoring antiferromagnetism.
The two couplings are equivalent only for SU(2).

In a frustrated AFM, the two-sublattice structure does
not exist and we must place the same representation at
every site. For SU(2), valence-bond operators can be
rewritten e b; bjt (e = —e and all =1). This gen-
eralizes to the symplectic group Sp(N) of 2N X2N uni-

tary matrices U such that d"'~b;~b~~p is invariant under
b Ub (independently of whether b is Bose or Fermi),
where d'" =ot„=6™e,a=(m, o), m =1, . . . , N
lSp(1) =SU(2)j.

In a Hubbard or t-J model, which introduces holes
into the AFM, the hopping term transfers spin from site
to site and so resembles the ferromagnetic coupling.
Thus in SU(N) models with conjugate representations
on neighboring sites there is no simple SU(N)-invariant
hopping term for N & 2; if instead one chooses all sites
with the same representation, hopping can be included
but not antiferromagnetic exchange. Our symplectic ap-
proach allows inclusion of both exchange and hopping
for all N. In particular, using fermions with Sp(N) in-
dices for spins and bosons for holes, the large-N limit
justifies the decoupling of Ref. 13 and produces super-
conductivity; phase separation into an insulating AFM
and hole-rich superconductor is also present. Details will

be given elsewhere.
In this paper we study AFMs where the Hamiltonian
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contains only antiferromagnetic couplings as described
above. The order-parameter manifold and the NLo.
models for the magnetically ordered states can be deter-
mined along the lines of previous work. '"' For a col-
linear ordered state (i.e., a Neel state with two sublat-
tices), the 8 sublattice has its spin (b S;~bp) [5, is a
generator of Sp(N) opposite in sign to that on A and the
order parameter is a point in the manifold M„~~
=Sp(N)/U(1) XSp(N —1); for N= 1 we recover CP'
(the unit sphere, 5 ). We note that n2(M„~j) =Z, the
group of integers, so that topologically stable point de-
fects in spacetime (hedgehogs) exist for all N when
d=2, while zI =0 so there are no line defects. For a
noncollinear AFM, spins at diA'erent sites are not
aligned, and the order-parameter manifold enlarges to
M „,„„~t= Sp (N)/Z2 x Sp(N —

1 ). This generalizes the
result for N= 1, SO(3) =SU(2)/Zq pointed out previous-
ly. ' ' For M„,„«~~, ~2=0 but z~ =Z2, so there are line
defects in spacetime (vortex world lines) for d=2 in this
case.

We shall study AFMs at zero temperature defined by
the Hamiltonian

where i runs over sites of a square lattice, and qz over
first-, second-, and third-neighbor vectors for p=1,2, 3.
The bosons satisfy the constraint b b =nb at each site
(nb =2S for N=1). The large-N limit is taken with

nb/N fixed and the resulting saddle-point equations ex-
pressed in terms of the bond fields Q~ =(r/'~b;, b; ~„,p)/
N, a Lagrange multiplier, ik =X, which enforces the con-
straint. The phases with long-range magnetic order
(LRO) require the additional variable' x'=(b')/JN
and thus break global Sp(N) symmetry. For large nb/N,
the saddle-point equations reduce to those obtained in

the classical limit (nb ~, N fixed), which in turn have
the same form for all N. Thus the nb ~, N ~ lim-
its commute and the large-nb/N limit of our results
reproduces the classical limit of H at N=1. We have
solved numerically the saddle-point equations as a func-
tion of nb/N, J2/J~, and J3/J~ at T=O with up to two
sites per unit cell and sixteen variational parameters;
wave-vector-dependent susceptibilities were calculated at
representative points to verify stability.

For J3=0 the phase diagram is shown in Fig. 1. For
small N/nb we find two phases with LRO: (i) For small
J2/J~ we have Q~ag, Q2=Q3=0, the ordering wave
vector is at (rr, n) and the phase is the analog of the Neel
state in SU(N) systems. (ii) For large J2/Ji, the classi-
cal limit' has independent Neel order on each of the A
and B sublattices; quantum fluctuations, which are au-
tomatically included in the present approach, cause the
Neel order parameters to align (order from disorder)
leading to LRO at (rr, O) (with Qq&0, Qi „&0, Q~,J =0,
Q3 0) or at (O, rr). The transition from LRO at (7r, x)

5—
(it, rt)

N/nz

(z K)
LR

1 2
J~/ Jt

FIG. 1. Ground states of H for J3=0 as a function of J2/J(
and N/nb lnb =2S for Sp(1)=—SU(2)]. Thick (thin) lines
denote first- (second-) order transitions at N=~ Phases . are
identified by the wave vectors at which they have magnetic
long-range order (LRO) or short-range order (SRO). The
links with Q~&0 in each SRO phase are shown. The large
N/nb, large J2/J~ has the two sublattices decoupled at N =~;
each sublattice has Neel-type SRO. Spin-Peierls order at
Anite N for odd nb is illustrated by the thick, thin, and dotted
lines. The (z, x) SRO and the "decoupled" states have line-

type (Ref. 5) spin-Peierls order for nb =2(mod4) and are VBS
for nb =0(mod4). The (O, x) SRO state is a VBS for all even
nb.

to LRO at (x,O) or (O, rr) is first order even for N/nb &0.
This disagrees with Ref. 17 which finds a "spin liquid"
phase exists at arbitrarily small N/nb near Jz/J~ =0.5.
While we agree that quantum fluctuations are very im-
portant in a "fan" emanating from Jq/Ji =0.5, N/nb
=0, we find that these fIuctuations just reinforce the
classical order —another example of order from disorder.
The spin-wave stiff'ness of both LRO phases, which is
typically of order N(nb/N), is reduced to a positive
value of order N(nb/N) at or close to the phase bound-
ary.

For larger N/nb, both LRO phases undergo continu-
ous (at N=~) transitions (Fig. 1) to the corresponding
short-range-ordered (SRO) phases with no gapless exci-
tations, unbroken Sp(N) symmetry (x =0) but the
same spatial distribution of the Q~, and the accompany-
ing broken rotational symmetry of the lattice. The tran-
sition line from LRO to SRO at (rr, x) is independent of
Jz/Ji, but this is surely an artifact of the large-N limit.
Finite-N Auctuations should be stronger as Jq/J~ in-
creases, causing the boundary to bend a little downwards
to the right. The (x,O) or (O, n) SRO phase breaks the
lattice symmetry x y. For J2/Ji and N/nb both large,
we have an additional "decoupled" state (Qq&0, g~

Q3 =0) where Qz is nonzero only for sites on the same
sublattice. This state does not break any lattice symme-
try. Fluctuations can induce further breaking of lattice
symmetry in all of these SRO phases and will be con-
sidered later.
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For J3~0, it is known that the classical magnet has in-

commensurate helical order with noncollinear LRO. '

Our phase diagram for a small value of N/nt, [N/nq =1,
Fig. 2(a)) is similar to the classical one and displays two
new LRO phases: (i) A (1,0) helix with ordering at
+' (q, rr) with Q) „&Q)y&0, Qz +y =Quay &0, Q3,
&0, and Q3r =0; the degenerate (0, 1) helix is obtained
by the mapping x y. (ii) A (1,1) helix with ordering
at ~ (q, q) with Q~ „=Q~ ~~0, Qq„+~aO, Qq~ „=0,
and Q3 =Q3~~0; this is degenerate with a (1, —1)
helix. ' The wave vector q varies smoothly from 0 to z.

and is continuous across second-order phase boundaries
[Fig. 2(a)]. In contrast to the classical limit, ' for N/nb
finite it requires a finite J3 to induce helical order; the
first-order transition from (rr, rr) to (x,O) order persists
for small J3.

As before, as N/nb is increased, the Sp(N) symmetry
is restored and the LRO phases become the correspond-
ing SRO phases; any broken discrete lattice symmetries
remain. Figure 2(b) shows the phase diagram for
N/n& =5. Note that global broken symmetries in states
with SRO at (O, rr) and (q, rr) are identical and are only
distinguished by a nonzero value of Q3 in the (q, rr)

phase. In the absence of any further fluctuation-driven
lattice symmetry breaking (see below), the transition be-
tween SRO at (O, rr) and (q, rr) is an example of a disor
der line. '

Figure 3 shows the transition from LRO to SRO as a
function of N/ni, for Ji&0. An intermediate state in

which Sp(N) symmetry is only partially restored (spin
nematic' ) does not appear in the large-N limit; a
d= 1+e expansion of similar NLcr models also does not
show any tendency towards such ordering. The Q~
variables can all be chosen real in all the phases, indicat-
ing the absence of chiral order. Note also that the com-
mensurate states squeeze out the incommensurate phases
as N/nb increases. We expect that this suppression of
incommensurate order by quantum fluctuations is a gen-
eral feature of frustrated AFMs.

We next consider finite-N, nonperturbative, topologi-
cal efIects in the SRO states. In the collinear states, this
can be done along the lines of previous work.

(i) (rr, rr).—The field-theory description is almost iden-
tical to the SU(N) case. Berry phases for spacetime in-
stanton point defects in a compact U(1) gauge theory
lead to spin-Peierls order of column (shown in Fig. 1) or
line type (not shown) for nb =1,3(mod4) and 2, respec-
tively, or a featureless VBS state for nb =0(mod4),
throughout the (x, rr) SRO phase. The "spinon" excita-
tions (b ) are permanently confined. Numerical" and
series analysis' appear to find columnar spin-Peierls or-
der for J3 =0, N= 1, nI, =1, and J2/J~ = —,', this is con-
sistent with our results if the (rr, rr) LRO to SRO bound-
ary moves down and bends downwards with increasing
J2/J ~ at finite N, as predicted above.

(ii) "Decoupled" state We .—can apply the previous
analysis to each sublattice separately, giving, e.g. , for
ni, =1(mod4), the type of spin-Peierls correlations shown
in Fig. 1. There is a total of 4&4 =16 states for this case
but coupling between the sublattices will reduce this to 8

states, all of one of the two types shown. For
ng =2(mod4), there will be 2X2/2 =2 states, and for
nb =0(mod4), just l.

(iii) (O, z).—This is an intermediate case where the J2
and Jt compete. Despite the presence of three nonzero
Q's in the unit cell of 1 site, there remains an unbroken
U(1) gauge symmetry for slowly varying transforma-
tions close to (O, n) as can be seen from the absence of
odd rings in the Q~O links in Fig. 1. The low-energy
theory is again a compact U(1) gauge theory and

possesses instantons which are the remnants of hedge-
hogs in the LRO phase and sit naturally on the horizon-
tal links where Q~ =0. Calculation either in the LRO
or SRO states gives Berry phases iznbR„, where R is

the integer x coordinate of the left end of the link.
Analysis of the sine-Gordon model resulting from duali-

ty in this case leads to spin-Peierls order of the type
shown in Fig. 1 for nb odd, and a VBS state for nb even.

N/t)b= I Y
SRO

N/nb

0 ~ i I I a a s I ~ ~ i & I

J/J 1 0

(a) (b)
FIG. 2. As in Fig. I but as a function of J2/J~ and J3/Ji for

(a) N/nq = I and (b) N/nq =5. Inset in (a): The region at the
tip of the arrow magnified by 20. A direct first-order transition
from (n, zc) LRO to (O, n) LRO occurs up to J3/Ji =0.005.

IRO

0.5

FIG. 3. As in Fig. I but for Jq/J~ =0.35.
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Combined with the choice (O, rr) or (x,O) this gives de-
generacies 2,4,2,4 for nb =0, 1,2, 3(mod4). All the spin-
Peierls states found can be understood as dimer packings
of valence bonds arranged to maximize the amount of
possible resonance and so gain energy from the links
with nonzero Q~. This picture also suggests that in the
decoupled state resonance using J i will favor the
configurations with parallel dimers on the two sublat-
tices.

Fluctuations in the incommensurate SRO states are of
a radically different nature. Consider, e.g. , the (q, q)
SRO state at a point close to its phase boundary to (z,x)
SRO. The two states differ by small nonzero values of
Qz +yQ3 in the (q, q) phase. These fields transform as
charge-2 Higgs scalars on the links under the slowly
varying U(1) gauge transformation of the (z, z) phase.
In the (q, q) state the scalar fields can form vortices with
flux quantum x: Instantons can change this flux by 2x,
so only a Z2 quantum number is topologically stable, in

agreement with the analysis of the LRO phase. The
d+1=3 charge-2 scalar, compact U(1) gauge theory
can display a variety of phases: ' (i) A Higgs phase in
which the vortices are suppressed. The b' quanta carry
charge 1 and are unconfined. These bosonic spin- —,

'

spinons occur for all nb. Gauge excitations have a gap.
There is no breaking of lattice symmetries beyond those
found at N =~. However, with periodic boundary con-
ditions the ground state has an additional factor-of-4 de-
generacy for all nb The addit. ional states are obtained
by changing the sign of all Q~ fields cut by a loop
wrapped around the system. This phase is expected to
survive in our phase diagram at finite N. (ii) A con-
finement phase with proliferation of vortices and instan-
tons, confinement of spinons, and a gap towards gauge
excitations controlled by the instanton density. A
plausible scenario is that this phase in fact coincides with
the (x,x) SRO phase and possesses spin-Peierls order.
(iii) Additional intermediate phases driven by the Berry
phases of the instantons and vortices —this possibility is
under investigation. Similar considerations also apply to
the (n, q) SRO phase. Numerical analysis of H for
N =1 (Ref. 24) to search for these incommensurate
phases would be useful.

This paper has presented a systematic analysis of frus-
trated quantum AFMs which displays clearly the cross-
over from the known classical limit to the quantum
disordered phases.
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