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Generic Scale Invariance and Roughening in Noisy Model Sandpiles and Other Driven Interfaces
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From symmetry arguments we construct a simple Langevin model to describe driven interfaces such as
lattice sandpile models composed of discrete grains in the presence of white noise. The model exhibits
generic scale invariance (or "self-organized criticality" ), with calculable exponents in all dimensions.
For spatial dimensions 1 (d ~ 2 it undergoes a roughening transition between two distinct phases with
algebraic correlations. The transition is Kosterlitz-Thouless-like in d =2.
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Correlations in finite-temperature equilibrium systems
with short-range interactions typically decay exponen-
tially with distance for generic parameter values, the
scale of the decay being set by the correlation length.
Only by tuning one or more parameters of the system to
critical values can one achieve scale invariance, i.e.,
infinite correlation lengths and algebraic decays of corre-
lations, which are the hallmark of continuous phase tran-
sitions.

It has become clear in the past decade, ' however, that
certain noisy nonequilibrium (or "driven") systems
exhibit generic scale invariance —infinite correlation
lengths and the concomitant algebraic decays for arbi-
trary parameter values. In fact, this behavior is now be-
lieved to occur in almost all noisy nonequilibrium sys-
tems with a conservation law. Moreover, Bak, Tang,
and Wiesenfeld have discovered that certain essentially
deterministic nonequilibrium systems such as model
sandpiles manage to spontaneously organize themselves
so as to produce responses to external perturbations
which are likewise scale invariant in space and time for
generic parameter values. This behavior, dubbed "self-
organized criticality" (SOC), has been proposed as the
origin of the ubiquitous occurrence in nature of both
fractal structures ' and 1/f noise.

In this paper we construct and study a continuum
Langevin equation for a sandpile problem in which one
imagines noise, in the form of sand grains dropped upon
or removed from the pile, acting constantly and without
correlation. As usual, the Langevin model is assumed to
represent the coarse-grained physics of the underlying
microscopic problem, and so to capture faithfully the
long-time, long-wavelength behavior. We build here on
the pretty work of Hwa and Kardar (HK), who first
proposed and analyzed a Langevin model for sandpiles.
The system treated here diA'ers from theirs in two main
respects: First, we impose an extra symmetry which we
believe is a crucial feature of sandpile (and of many in-
terface) problems. Second, we add terms to HK's con-
tinuum sandpile theory which represent the eA'ects of the
discrete lattice present in the microscopic model sand-
piles typically studied. The resulting model bears strong
resemblance to the dynamical sine-Gordon theory '

which describes the dynamics of the rough and smooth

phases, and of the roughening transition, in familiar
equilibrium interface systems. While the model is
motivated by sandpiles, it should describe other driven
lattice interface systems'' which have the same sym-
metries.

Our main results follow: In any spatial dimension d
the model exhibits, in accordance with the results of Ref.
3, SOC: Spatial and temporal correlations decay alge-
braically. For d &4, the upper critical dimension, all
nonlinearities are irrelevant, the theory reduces to a
noisy diA'usion equation, and the exponents describing
the behavior of correlations assume the trivial mean-field
(or Gaussian) values. For 2 & d & 4 the linear theory is
unstable, and the long-distance behavior is controlled by
the strong-coupling fixed point analyzed by HK. (Note
that, like ordinary equilibrium interfaces, ' the surface
of the sandpile is, for all d & 2, smooth; i.e., the surface
width remains finite as the lateral size of the sandpile
goes to infinity. Thus the system spontaneously breaks
translational invariance. ) For 1 & d ~ 2, both the
Gaussian and the (strong coupling) HK fixed points are
stable, and have separate basins of attraction in the pa-
rameter space. These fixed points respectively describe
rough and smooth phases for this range of dimensions;
their basins of attraction are separated by a critical sur-
face controlled by a critical roughening fixed point. For
d =1 the stable Gaussian fixed point most likely attracts
the entire parameter space.

These conclusions are obtained by application of
renormalization-group (RG) methods to the Langevin
model appropriate to the coarse-grained description of
noisy sandpiles. In constructing such a model, we follow
HK in picking out one particular (the parallel) direction
in which the sand actually slides; the other (d —1) (per-
pendicular) directions correspond to motions around the
pile at constant height, and are assumed equivalent.
(Obviously one could just as well take two sliding direc-
tions, say, and obtain difIerent quantitative results, but
with little conceptual change. ) It remains only to identi-
fy the correct symmetry of the system to define the mod-
el fully. HK proposed the following equation for a con-
tinuum sandpile without discrete lattice structure:

eih/Bt =v V„h+ v V h —kV h +q;
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here h(x~~, x&,t) represents the height of the sandpile at
the point (x~~, x&) and time r, measured from the average
(linear) profile of the sandpile, and q is a random noise
term with Gaussian (white) correlations:

(g(x, t)q(x', t')& =DS(x —x')6(r r') .—

The noise is intended to represent grains of sand added
to or removed from the pile at random, and so does not
conserve the total amount of sand. (HK also considered
a model with conserving noise. ) Note too that the
deterministic part of model (1) conserves the field
h(x, t), consistent with real sandpiles wherein sand can
leave the system only by sliding off' a boundary. The
model allows for diff'erent diAusion constants, v~~ and v&,
in the parallel and perpendicular directions; k is a cou-
pling constant. It also incorporates translation invariance
in x, rotational invariance in the (d —1) perpendicular
directions, and invariance under the transformation
h —h, x~~

—
x~~, representing "particle-hole" sym-

metry; i.e., a mound of sand sliding down the pile is
equivalent to a depression sliding up the pile. This last
symmetry prohibits the linear drift term Bh/Bx~~ from
appearing on the right-hand side of (1). It is not, howev-

er, a symmetry which is obeyed by generic dynamical
rules for model sandpiles, though one can certainly con-
struct specific sandpile rules which satisfy it. [Even
without this symmetry, one can eliminate the Bh/Bx~~

term by the Galilean transformation: h (x ~~, t ) h'(x
~~,

t) =h(x~~ —t, t).] Though all terms consistent with these
symmetries should appear on the right-hand side of (1),
HK showed that only the ones displayed in (1) are
relevant under the RG: The others do not aff'ect the
long-distance, long-time behavior.

An important symmetry of sandpile and other inter-
face systems missing from Eq. (1) is invariance of the
equation under uniform translations: ii(x, r) h(x, t)
+c, for arbitrary constants c. This symmetry [violated
by the nonlinear term of (1)] refiects the insensitivity of
the system dynamics to anything except local height
diAerences, i.e., gradients of h. While the existence of an
equilibrium profile from which one measures heights
suggests that one is not free to translate the pile arbi-
trarily, the position of this profile is determined by
boundary conditions, and so should not affect the local
dynamics. For example, a sandpile (of length L) can be
created by imposing the boundary conditions h(x~~

=L) =0 and Bh(x~~ =0)/Bx~~ =0 (which simulates the
eAect of an arbitrarily high wall at x~~~ =0). Changing
the condition at x~~ =I to h(x~~=L) =hl. , for some
hL&0, while leaving the condition at x~~ =0 unaltered,
creates a pile identical to the original but translated uni-

formly upward by hL. The local dynamics of the two
piles must, however, be identical, so that only gradients
of h can appear in (1). The lowest-order nonlinear term
consistent with this extra requirement has the form
V~~((Vh) ). It is simple to show that this, and all other

symmetry-allowed terms, are irrelevant under the RG.
Thus the long-distance, long-time behavior is correctly
given by the linear terms of (1), and so is not terribly ex-
citing, though it does exhibit generic scale invariance, or
SOC.

A more interesting theory —one that can be directly
tested by computer simulation on discrete models —is
obtained by the incorporation of a lattice structure. One
imagines that the sandpile consists of a regular lattice of
columns of sand, each column being a vertical stack of
discrete grains of identical (say, unit) size. Thus the
Langevin equation defining the model must be invariant
under the transformation h h+c not for arbitrary c,
but only for integer c's. The coarse-grained equation
consistent with this (and the earlier) symmetries is '

Bh/Bt = viiVii h+ v&V&h —
XVii cos(2xh ) + rl . (2)

Obviously, terms of the form V~~cos(2+nb) for all in-
tegers n are also allowed by symmetry. As in the ordi-
nary equilibrium sine-Gordon theory, ' these higher har-
monics turn out to be less relevant under RG transfor-
mation, and so need not be considered. The cosine term
in (2) is the most relevant symmetry-allowed nonlinear
operator. Note that (2) describes the long-distance and
long-time properties not only of noisy sandpile models,
but of any discrete nonequilibrium system which has
h h+n invariance and the other symmetries described
above, and is driven preferentially in a particular direc-
tion.

Standard RG methods allow the analysis of the lattice
model (2). For dimensions d close to 2, i.e., d =2+a, the
lowest-order recursion relations are

R,/t)l = sX —XA,

Bh/fall = —e(1+6) —82

(3a)

(3b)

where 8 is a positive constant. These equations are the
leading terms of a systematic expansion in the three
small parameters X, s, and 5=xD/2(v~~ v~)

'i —1;—v~ and
the noise strength D do not renormalize.

Equations (3) with v~~ =v~ =v are virtually identical
to the recursion relations obtained for the time-depen-
dent Ginzburg-Landau equation, '

Bh/Bt = vV h —X sin (2+& ) + rl,

describing the dynamics of the roughening transition in

the equilibrium sine-Gordon interface theory. ' This is
not surprising, since the sandpile model (2) is also an in-
terface problem, albeit a nonequilibrium one. Let us
brieAy review the interpretation of the RG Aows (3) in

the context of equilibrium roughening before discussing
the sandpile problem: In d=2, Eqs. (3) give rise to the
familiar Kosterlitz-Thouless' Aow diagram [Fig. 1(a)].
This consists of a stable (Gaussian) fixed line at k =0 for
6, & 0, with a corresponding basin of attraction compris-
ing the wedge roughly described by O~k &h, . Points
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FIG. 1. RG flow diagrams for the recursion relations (3) for
(a) d=2and (b) 1&d&2.

with X & 0 not lying in this basin flow ofI', as indicated in

Fig. 1(a), to a strong-coupling fixed point at large ). and
negative 5 (i.e. , large v), beyond the range of validity of
the recursion relations. It is well known' ' that the
basin of attraction of the fixed line corresponds to the
rough (high temperature) phase of the system: Initial
parameter values in this basin give rise [as is seen by set-
ting X =0 in (4)] to algebraic decay of correlations with
mean-field, or Gaussian, exponents; e.g. , the dynamical
exponent z is 2, the average width w of the interface,
defined by w =(h(x, t) ), diverges logarithmically with
the linear size L of the system, etc. On the other hand,
the locus of points which run off' to strong coupling
define the smooth phase of the system, characterized by
a w which remains finite as L diverges, and exponential
decays of correlations. ' ' One can infer this by noting
that the RG flows to large X and large v imply both a
growing amplitude of the cosine potential and an in-
creasing energy cost for Auctuations in h. This tends to
localize the field h in one of the wells, thereby spontane-
ously breaking the h h+n symmetry of (4), and pro-
ducing a phase wherein h(x) fluctuates only modestly
about the bottom of the chosen well (h =0, say), i.e. , the
smooth (low temperature) phase. For large X and v one
can thus expand the sine term in (4) about h =0, i.e., re-
place sin(2trh) by 2trh; the essential features of the
smooth phase (e.g. , the exponential decays) emerge im-
mediately. Finally, the Kosterlitz-Thouless transition'
between the rough and smooth phases is controlled by
the fixed point at X =6 =0.

For 1 & d & 2 this qualitative two-phase picture
remains intact, ' the main difference being that the Aow

diagram is slightly diA'erent [Fig. 1(b)], the rough phase
being controlled by a fixed point at X=O, h, =~, rather
than a fixed line. ' The exponents characterizing the

rough phase and the critical roughening exponents also
vary with d. Again, the runaway flows to large X imply
the existence of a smooth phase, though one cannot ex-
tend this conclusion down to d=1, where exact calcula-
tions' show that there is no smooth phase. Finally, for
d & 2 there is no stable Gaussian fixed point or line at
X=O, only runaways to large X, consistent with the ex-
istence of only a smooth phase ' ' ' for d & 2.

We return now to the actual sandpile problem, which
is described by essentially the same recursion relations
and RG Aows. For 1 & d ~ 2 there is still a Gaussian
rough phase with power-law correlations and hence
SOC, and mean-field exponents controlled by a fixed
point (or line for d=2) at X=0. Again, the runaway
Aows to large X and v~~ for all d & 1 signal a spontaneous
breaking of the h h+n symmetry and the occurrence
of a smooth phase. The nature of this phase can, again,
be inferred by choosing the well centered about h=0,
and expanding the V~~cos(2+h) term in (2) to lowest non-
trivial order in h, thus obtaining V~~h as the nonlinear
term. The resulting model is then precisely that of Eq.
(1), studied by HK, who showed that it exhibits SOC,
and computed its exponents for all d & l. In particular,
the interfacial width w varies with L like L
for large L, implying a smooth interface for d & 1. This
must be the case if our reasoning is to be consistent: In
expanding the cosine term in (2) we assumed that the
system is localized in a single well, i.e., has finite width
fluctuations, just as in the equilibrium roughening model.
Unlike in that model, however, where the smooth phase
is characterized by exponential decays' of correlations,
the HK smooth phase has the algebraic decays charac-
teristic of SOC, consistent with our earlier general argu-
ments that any conserving system with nonconserving
noise must exhibit SOC.

Thus we arrive at the results summarized earlier: For
1 & d ~ 2 the sandpile model has two power-law phases,
one rough, with mean-field (Gaussian) exponents gov-
erned by fixed points at A, =0, and one smooth, with ex-
ponents given by HK's strong-coupling fixed point. For
d & 2, the Gaussian fixed point becomes unstable, and all
trajectories run off to the smooth, algebraic phase con-
trolled by the HK fixed point. For d & 4, the upper criti-
cal dimension for HK's model, the smooth phase has
Gaussian exponents. The roughening transition con-
necting the rough and smooth phases behaves the
same way as its analog for equilibrium roughening:
Kosterlitz-Thouless-like' in d =2, and power-law-like '

for 1&d &2.
A remaining uncertainty is the behavior at d=1. The

Gaussian rough phase controlled by the k =0 fixed point
is present, but the meaning of the runaway to strong cou-
pling is less clear. It seems unlikely that the strong-
coupling phase is smooth, since that would imply a bro-
ken h h+n symmetry which, in d=1 with nonzero
noise, is extremely dificult to achieve. ' lf the strong-
coupling phase is rough, then the manipulations whereby
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we derived HK's model as the strong-coupling limit of
our own are invalid. To complicate the matter, HK's
model has not yet been solved right at d=1. To us the
most likely possibility, given how dificult phase transi-
tions are to achieve in noisy d=l systems, is that the
Gaussian rough phase occupies the entire phase diagram.
Though we cannot rule out the existence of a distinct,
algebraic, strong-coupling rough phase at large A, , pre-
liminary numerical calculations' on a discrete, driven
interface model whose long-distance behavior should be
described by Eq. (2) find only the Gaussian rough phase.
Finally, note that one can also analyze model (2) in the
presence of conserving noise. For d ~ 2, the upper criti-
cal dimension, one finds only a smooth, Gaussian phase,
whereas for d=l there is, as argued in Ref. 3, only a
smooth phase with exponential correlations.
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