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Exploiting the computational efficiency of the cell-dynamical-system modeling of spinodal decomposi-
tion, a large three-dimensional, critically quenched binary-alloy system was studied. The primary result
is the conclusive determination of the time-asymptotic scaled form factor, which satisfies Porod’s law,
Tomita’s sum rule, and the exponent inequality for the small-wave-number limit by Yeung.
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Our understanding of the phenomenon of spinodal
decomposition has developed very slowly. There is yet to
be a fully coherent, consistent and calculable theory of
late-stage spinodal decomposition, even without hydro-
dynamic or strain effects. Because of this, computational
studies are valuable sources of information.

In this Letter, we report on the results from a (deter-
ministic) cell-dynamical-system' (CDS) study of spino-
dal decomposition? with critical quench. The largest
feasible system (1923) was used to avoid finite-size ef-
fects which occur when only a few domains dominate a
small system. The well established computational effi-
ciency of the CDS scheme?® made it possible to study a
large system size, allowing us to accurately sample many
data points about the peak intensity region of the form
factor S(k,z) =Cyx()y_x(¢)). Here, yy is the spatial
Fourier transform of the order parameter y describing
the local composition: y= * 1 corresponds to complete-
ly segregated phases and y =0 to a disordered mixture
phase.

In the late stages, the domain pattern formed by the
segregated phases at one time is conjectured to be sta-
tistically similar to the pattern at a later time. This
should lead to a master form factor, scaled by a single
time-dependent length scale /(z) proportional to the
representative size of the growing domains, F(x)
=/(¢) 73S (k,t), where x=kl(z).* One form of this
length scale may be (k) ~', defined through

[&dk kS (k,t)
S5 dk S(k,t)

where S(k,t) is the circularly (in k space) averaged
form factor S (k,¢), normalized so that [ d3k S(k,z) =1.

The theoretically established facts about the scattering
form factor S(k) concern the limits k— 0 and k— oo,
The Tomita sum rule’ states that there is a positive num-
ber A4 such that

k() =

)

[ stk ~ Alak=o.

This contains Porod’s law for the tail: S(k)~k ~%.
Yeung® demonstrated that S(k)~k® where 6§=4 for

small k (see also Ref. 7), under a natural assumption
about the chemical potential.®

Many experiments’ and numerical simulations
have pointed to a universal growth law for the length
scale, (k) "'~1?, where ¢ =1, and the existence of a
universal form factor at the very late stages of develop-
ment. Numerically, the form factor as well as the ex-
ponent ¢ has been reliably determined in two-space with
the aid of a CDS scheme.'® To date, only two other
late-time, three-space numerical studies of a binary alloy
are known to the authors.'>!* Only the study by Chak-
rabarti, Toral, and Gunton was a critical quench, but the
small system size (66°) precluded a reliable determina-
tion of the form factor. '3

We used the following CDS model for spinodal decom-
position:?

vi+1(m) =y, (n)+1I,(n) =1, (),
I;(n) =Dy, (0))) —y,(n)]+F(y,(n)) —y,(n),

10,11

where y,(n) is the order parameter at time ¢ in the cell
at n. We chose an easily computable approximation
F(y) =Atanhl(arctanh4 ~')y]l. A4 controls the quench
depth, and D is the static coupling strength among near-
by concentration fluctuations. ({-)) is an averaging over
a neighborhood of cells. We chose the ratio 6:3:1 for
weighting nearest, next-nearest, and next-next-nearest
neighbors. The parameters used were 4 =1.15 and D
=0.7. Twenty samples were studied to 10000 time
steps, and two samples were studied to 20000 time steps.
Initial conditions were a random distribution between
+0.1. The computation required roughly 260 hours of
Cray-2 time, and main memory usage of roughly 14
megawords. The patterns we obtained exhibited a
domain-wall thickness (between wy= +0.9) of 3 cells,
and a mean domain size of roughly 11.5 cells at time
step 10000 and 14.4 cells at time step 20000. Our
scheme is about 10 times as fast as that used by Chakra-
barti, Toral, and Gunton. '3

We calculated ¢.r= —9In{k)/01Int vs (k) between
time 4000 and 10000. ¢y increases with decreasing (k).
Using a linear regression, we extrapolated the data to the

© 1991 The American Physical Society 173



VOLUME 66, NUMBER 2

PHYSICAL REVIEW LETTERS

14 JANUARY 1991

(k)=0 axis. From this, we estimate the asymptotic ex-
ponent to be 0.334 + 0.005. Further, it is estimated that
to clearly see an effective exponent ¢eq= 0.32, the sys-
tem would have to be at 30000 time steps or greater.
Our form factors scaled well after time step 4000 with
minor changes evolving over time (Fig. 1). The scaled
form factor is in good agreement with the one obtained
by Ohta and Nozaki'* for x=k/(k)= 0.5 but not with
the recent result by Mazenko.'> The form factor in
three-space is significantly narrower than the two-space
case about the peak. The three-space form factor is
symmetric in appearance about x =1 while the two-
space form factor is somewhat asymmetric. '®

Our main result is the estimation of the truly asymp-
totic functional form of the scaled form factor up to
x =4 (the peak position is at x=0.95). We conjecture a
stronger version of the scaling hypothesis: The physical-
ly relevant length scales that determine the form factor
in the preasymptotic regime are the domain size and the
domain-wall thickness. More precisely, we conjecture
that the transformation w— sgn(y) removes any effect
on the form factor due to the finiteness of the ratio p of
the wall thickness and the domain size in the preasymp-
totic regime. We will refer to all data from this transfor-
mation as ‘“hardened.” This conjecture has been sub-
stantiated in the nonconserved-order-parameter case.'’
If this stronger scaling hypothesis is correct, then the
hardened scaled form factor should be time independent.
If this is the case, the resultant form factor can be inter-
preted as the truly asymptotic form factor.

Figure 2 is a graph of F(x)x* vs x (the Porod plot).
The form factor for x <2 already scales well beyond
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FIG. 1. The scaling of the form factor over time. The
Ohta-Nozaki form factor is normalized such that the peak
coincides with the peak for time step 20000. The form factor
for hardened data at time step 10000 has a peak which is re-
duced from the unhardened data due to normalization. Also,
(k) for the hardened form factor is about 4% greater than for
the unhardened data.
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time 5000, but a significant second peak is still evolving
over time. Such a peak has been recognized by large-
scale, late-time CDS studies in two dimensions, but it is
not as pronounced.'® Interestingly, the Ohta-Nozaki
theory predicts such a second peak. The tail part of the
form factor is steadily rising, solely due to the decrease
of the ratio p as demonstrated by Oono and Puri."’
They showed that to see a clear sign of Tomita’s sum
rule, p < 55 is required. In our present simulation, the
best we achieve is p =0.21.

In Fig. 3, the scaled hardened form factors exhibit
clear time independence for 0 < x < 4.0 for a wide range
of times from 5000 to 20000 time steps. Thus our
stronger scaling hypothesis is substantiated. We con-
clude that up to x==4.0, the hardened form factor has
the asymptotic functional form. The upward rise in the
hardened form factors for x=4.0 comes from the
jagged domain wall due to the hardening of a discrete
system. Hardening with “softer” transformations like
v— tanh(Cy) have shown this to be true, where C con-
trols the softness of the wall. At later times, the har-
dened tail reduces, as the lower-length-scale cutoff due
to the cell size scales out of the figure. The discrepancy
between the hardened and unhardened form factors
around the first peak is mainly due to the normalization;
the tail part rises for the hardened form factor, so that
the relative weight of the first peak decreases.

Porod’s law and Tomita’s sum rule are obeyed by the
hardened form factor after accounting for the rise in the
tail. This is confirmed by the hardened data from time
step 20000 which are nearly flat up to x =7 thus obey-
ing F(x)«x ™% (Porod’s tail). We feel that the form
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FIG. 2. Comparison over time of x*F(x) =(k*/{k))S (k,t),
where x =k/(k). Unlike the Ohta-Nozaki form factor, the
data do not exhibit a flat tail characteristic of Porod’s law.
This is due to the large ratio p. However, as p decreases, the
tail rises toward a constant. For clarity, we removed every oth-
er data point for x > 1.75.



VOLUME 66, NUMBER 2

PHYSICAL REVIEW LETTERS

14 JANUARY 1991

10 —

o time=5,000

4 time=10,000

» time=20,000
------------- Ohta and Nozaki

[o 4]
T
e
i

(o2}
T
eBee O b
ok..a0
1

k* <k>~' S(k) (arbitrary scale)

k/<k>

FIG. 3. Comparison over time of x*F(x), where x =k/{k),
for hardened data. The rise in the tail for earlier times is due
to the discreteness of the system. At time step 20000, the tail
is generally flat to the end of the plot since the small-length-
scale cutoff has scaled out of the plot. From time 5000 to
20000, the structurally interesting region of 0 < x <4 shows
universal behavior and can be interpreted as asymptotic. The
Ohta-Nozaki form factor is plotted for comparison, with nor-
malization to the peak of the hardened form factors. For clari-
ty, every other data point is removed for x > 1.75.

factor from the hardened 20000-time-step data correctly
portrays the asymptotic form factor up to x=7. Current
computational techniques offer almost no hope in getting
the unhardened form factor to clearly exhibit the precur-
sor of Tomita’s sum rule. To reduce the ratio p to 0.1
(which is still much larger than 35 ) would require an es-
timated 180000 time steps using the current model, and
would also require a larger system (= 2563) to avoid
finite-size effects and to obtain adequate resolution of the
form factor.

In Fig. 4, we plot a log-log graph of the scaled form
factors. This graph clearly shows that at small x the
form factor is consistent with F(x)~x° with §=4.
However, there is a large error in S(k) for the smallest
and the next smallest k.'® The log-log plot also exhibits
a hump at about x =3.

In summary, for the first time, the true asymptotic
form of the scattering form factor for a critically
quenched system is known. All the major characteristic
features of the asymptotic form factor, the bound on the
small-k exponent, Porod’s law, and Tomita’s sum rule,
are supported by our study. Although the elegant and
simple theory by Ohta and Nozaki is somewhat success-
ful, our data clearly indicate that the theoretical under-
standing of the asymptotic form factor is yet to come.
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FIG. 4. Log-log plot of unhardened and hardened form fac-
tors. The lowest-k data points are quite scattered due to the
small number of points involved in the averaging procedure
(Ref. 18). However, the small-k region is consistent with
Yeung’s inequality. This plot shows a clear second-order
hump.
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