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Second-Order Symmetric-Asymmetric Phase Transition of Randomly Connected Membranes
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Static light-scattering experiments on pseudoternary systems of salted water, pentanol, and sodium

dodecyl sulfate are presented. The results show evidence for a second-order phase transition between
two isotropic phases which is not a classical liquid-liquid phase separation. We discuss these results in

the frame of the sponge-asymmetric phase transition which has been described for systems of self-

avoiding connected membranes. Both the correlation function and the critical behavior of the scattered
intensity are analyzed and are shown to be in agreement with theory.

PACS numbers: 64.70.Ja, 64.60.Fr, 78.35.+c

The problem of self-avoiding random liquid surfaces
has recently received a lot of attention, mainly because
of its equivalence with lattice gauge theories used in ele-
mentary-particle physics. ' The deduced theoretical dia-
grams reveal the possibility of a phase transition between
two isotropic liquid phases. ' One of these phases con-
sists of a randomly connected surface separating two
equivalent volumes. This symmetry can be spontaneous-
ly broken, leading to a phase of surfaces where an inside
can be unambiguously defined from an outside. As a
consequence, a line of critical points (i.e., a second-order
line) between the symmetric and the asymmetric phase is
predicted theoretically. '

In the context of condensed matter, such a description
has been used to predict the phase behavior and thermo-
dynamical properties of surfactants in solution. In-
deed, among other organizations surfactant molecules
can form monolayers or bilayers. For example, it is well

known that in certain cases microemulsions can be de-
scribed as two continuous domains (oil and water) sepa-
rated with a monolayer surfactant film. As far as bi-
layers are concerned, these membranes can also form
isotropic phases of self-avoiding connected membranes,
the main difference with microemulsions being that the
chemical nature of the two continuous domains is the
same. One can arbitrarily define an inside from an out-
side domain corresponding, for example, to oil and water
in the microemulsion case. Because of the equivalence
between the domains, the bilayer system can exist in two
different states: a symmetric state (the sponge phase)
corresponding to a perfect symmetry between the two
domains (the inside and outside volumes are the same)
and an asymmetric state where this symmetry is broken
(there is less inside than outside). The structure of these
phases has been clearly established by neutron-scattering
experiments. Moreover, the symmetric (or asymmetric)
nature can be demonstrated by light-scattering experi-
ments (as discussed in the following) and these phases
are experimental realizations of phases of randomly con-
nected membranes.

From theoretical grounds, when diluting a symmet-
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FIG. 1. Schematic view of the phase diagram. L, stands for
the lamellar phase (expressed in wt%). P, is the critical point.
The dashed lines give the experimental dilution lines. MTL is
the line of maxima of turbidity.

ric (sponge) phase, one expects a sponge-to-asymmetric
(S-2) phase transition. In fact, such a transition has
been observed. However, up to now only first-order
transitions were described. We report in this Letter the
first evidence for a line of second-order S-2 transitions.
The corresponding critical behavior is analyzed by static
light-scattering experiments which are shown to discrim-
inate between the symmetric and asymmetric phases.
The divergence of I(0) (scattered intensity extrapolated
at q =0) and g (correlation length of the critical fluctua-
tions) are deduced from the fit of the experimental data
and compared with the theoretical predictions. In par-
ticular, the critical exponent s-0.5-0.6 deduced for the
divergence of I(0) is shown to be in agreement with the
theory.

The phases of interest in this study are obtained with

pseudoternary systems of salted water (20 g/liter of
NaC1), sodium dodecyl sulfate (SDS), and pentanol
when a large proportion of water is present. ' Figure 1

shows the relevant part of the phase diagram. Two
monophasic domains are present corresponding respec-
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tively to a lamellar (I.,) and an isotropic domain. The
phase separation between these two phases corresponds
in the right part of the figure to a weak first-order transi-
tion. The exact topology of the phase diagram on the
left side of the L domain is presently under investiga-
tion. In the right part of Fig. 1, below the demixing line
a complex polyphasic region is observed. In particular, a
phase separation between two isotropic phases is present
with a critical point P, . In the isotropic monophasic re-
gion, a line of maximum of turbidity (MTL) is found ex-
perimentally which seems to end very close to P, (be-
cause of the extreme dilution the exact topology of the
phase diagram is not known). The isotropic phase locat-
ed on the right (concentrated) side of the MTL has al-
ready been identified as a sponge phase of connected
membranes. The characteristic size of the sponge gn

increases continuously as the MTL line is approached.
Therefore this line is a good candidate for a second-order
5-A line. To check this assumption, two series of sam-
ples were prepared along the dilution lines given in Fig.
1. To discuss the influence of P„one of these lines is

very close to the two-phase region (line A), the other one
being as far from P, as allowed by the presence of the
lamellar domain (line 8). Intermediate shorter lines
were also prepared to confirm the results.

Static light scattering was used to characterize the
diAerent samples. This method gives the density correla-
tion function. This function has been recently calculated
in both the S and the 2 phases using perturbation
theory. ' '' To describe the correlation functions at the
level of a Landau-Ginzburg approximation, two order
parameters are necessary. Introducing p the volume
fraction of membrane, one can define the density order
parameter p =p

—(p). In addition, another order param-
eter g associated with the S-4 transition should be intro-
duced. It can be defined as the difference between the
outside and inside volumes. The free energy density
reads as follows:

tively. I ~ =1/a and I „=I/4 are the susceptibilities for p
and ti. g~=(c/a) ' and g„=(C/A) '~ are the corre-
sponding correlation lengths. K and K' are proportional
to the square of the coupling constant X. Close to the
5-A transition, the expected behavior is more complex (a
crossover between the two formulas should indeed be ob-

served). In both cases the first term gives the well-

known Ornstein-Zernike law. However, when the q fluc-

tuations dominate, the q dependence of the correlation
function becomes original and the result is diA'erent for
the symmetric and asymmetric phases.

The experimental data obtained can always be fitted

using one of the above formulas depending upon the lo-

cation of the sample compared to the line of maxima of
turbidity. Indeed, for the most concentrated samples,
only the symmetric formula gives a reasonable fit. On
the contrary, only an asymmetric fit is possible for the
most dilute samples. As expected both formulas give a
reasonable fit very close to the maximum of turbidity.
Figure 2 gives examples of these three situations with a
plot of 1/I(q) vs q which is an easy way to discriminate
between the difIerent cases. Indeed, in the symmetric
case the data are curved downward while they are curved

upward in the asymmetric case.
For all the measured samples I ~ remains small and the

first term can be ignored. This means that direct density
fluctuations remain small. In the same way the correla-
tion length (~ remains smaller than a few 100 A with no

critical behavior. On the other hand, I(0) and g„show

Af =(2/2)g +(8/4)rl +(a/2)p +(b/4)p

+) prl'+ (C/2)(Vrl) + (c/2)(Vp)'.

This free energy is valid in both phases. In the asym-
metric phase, the nonzero value of q gives an extra cou-
pling term (with 6g =rl —(rl)) 2kp6q.

The Fourier transform of the density correlation func-
tion (p(0)p(r)) has been estimated in both cases. s' ''
The result is

I" ~s,~

(1+(2 2)2

with Bg =Kl „I~g„, Bg =K'I „I,and

tan ' (qg„/2) 1F,(qg„) = ",F~(qg„) =
q(„2 " 1+gq

where S and A stand for sponge and asymmetric, respec-

iP6 2 (g-2 l

FIG. 2. Plot of the inverse of the scattered intensity against
the square of q to show the diff'erent regimes. The points give
the experimental results. The solid lines give the fits using the
theory. 5, 2, and C are typical curves in the sponge, asym-
metric phase, and close to the phase transition. They corre-
spond to samples of dilution line 8 with /=3. 5%, I.9%, and
2.8%, respectively (p, is 2.25% for this line). p is the mem-
brane volume fraction (SDS plus alcohol volume fraction).
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FIG. 3. Light-scattering results for dilution lines A and 8 1(0) is the i.ntensity extrapolated at q=0; g is the correlation length
for the order parameter g as introduced in the text. Open and solid symbols stand for the 5 and 8 fits, respectively.

for both dilution lines a sharp increase close to the max-
imum of turbidity as seen in Fig. 3. The comparison of
Figs. 3(a) and 3(b) shows that the vicinity of the critical
point P, for one of the lines does not enhance the ob-
served divergence. The comparison with intermediate
shorter lines shows the same divergence all along the line
of maxima of turbidity. This demonstrates that this line
is a line of second-order S-A phase transitions corre-
sponding to the divergence of the g fluctuations.

We now analyze in more detail the critical behavior at
the transition. Both I(0) and g„determined from the fit
show a divergence close to the transition. However, only
I(0) is insensitive to the details of the fit and is accurate
enough to allow the determination of a critical exponent.
Because of the sharpness on the A side only the diver-
gence on the symmetric (sponge) side will be analyzed.

Since the approach of the second-order line follows a
concentration path, in order to extract the singular part
from the thermodynamical quantities, one needs to take
into account the regular volume-fraction dependence. In
the case of the sponge phase, the characteristic length (o
(cell size) which gives the length scale below which the
membrane is fiat is proportional to I/p, where p is the
volume fraction of membrane. This comes from the
invariance of the sponge under the transformation
=a&, x'=x/a (where x is a length). The same argu-
ment predicts f'=a f for the free energy per unit vol-
ume. ' The experimental estimation of (o is given by the
position of the bilayer correlation peak and shows the ex-
pected I/p behavior. With similar arguments one can
deduce that the regular part of 8, [I(0) when rI Iluctua-
tions are dominant] scales like the compressibility, i.e.,
like I/P.

Thus to extract the critical behavior, one should plot
In(&8) against In(p —P, ), where p, is the volume frac-
tion of membrane at the transition (we have estimated
p, = 2.05% and 2.25% for dilution lines A and 8, respec-
tively). This plot for the line 8 is given in Fig. 4. We
obtain a linear plot with an exponent of a=0.5-0.6.
Considering the expression for 8 given previously and as-
suming a divergence of I „and („with exponents y and
v, respectively, we expect to find s=2y —3v=v(1 —2tI).
The corresponding mean-field and Ising values are re-
spectively 0.50 and 0.58, both in agreement with our re-
sult. It is remarkable that this exponent is far from the
one expected for a compressibility usually deduced from
1(0) in a light-scattering experiment (y =1-1.2). This
clearly supports the theoretical analysis of the 5-A phase
transition in terms of a two-order-parameter problem. A
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FIG. 4. Log-log plot of &Io vs p
—p, for dilution line B to

show the critical behavior. The straight line has a slope of 0.5.
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similar value of s is found very close to p, for line A.
However, the log-log plot shows in this case some curva-
ture for larger values of p. The vicinity of P, (i.e. , a pos-
sible influence of p fluctuations) is probably at the origin
of this result.

Finally, the dissymmetry of the data shown in Fig. 3 is
quite remarkable: The domain where critical eA'ects are
important is more narrow on the asymmetric side. As
far as 8 is concerned, this figure is not surprising: The
expected critical behavior from the formula given previ-
ously should be diAerent, in particular, with diAerent
critical exponents on the 5 and A sides. The accuracy for

(„ is not good enough for a detailed discussion. In any
case, the observed asymmetry may result at least partial-
ly from the vicinity of a tricritical point. ''

In summary, we have presented static light-scatter-
ing experiments to show the existence of a continuous
sponge-asymmetric phase transition. The critical behav-
ior close to the transition has been shown to originate
from fluctuations of the t) order parameter revealed by
light scattering through its coupling with the density.
Because of this peculiar situation the divergence of
I(q=0) is quite dissymmetric. In the symmetric phase
the expected critical exponent is about 0.5, in agreement
with experiment. Further studies, such as dynamic light
scattering, are in progress for a better understanding of
the critical behavior.
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