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Physical Model of Intermittency in Turbulence: Inertial-Range Non-Gaussian Statistics
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We present a physical model to describe the equilibrium probability distribution function (PDF) of ve-

locity diAerences across an inertial-range distance in 3D isotropic turbulence. The form of the non-

Gaussian PDF agrees well with data from direct numerical simulations. It is shown that these PDFs
obey a self-similar property, and the resulting inertial-range exponents of high-order velocity structure
functions are in agreement with both experimental and numerical data. The model suggests a physical
explanation for the phenomenon of intermittency and the nature of multifractality in fully developed
turbulence, namely, local self-distortion of turbulent structures.

PACS nUmbers: 47.25.Cg, 02.50.+s, 05.40.+j

It has been observed, both experimentally' and numer-
ically, ' that the statistics of fully developed turbulence
becomes increasingly non-Gaussian towards small scales.
These intermittency effects are, in particular, character-
ized by increasingly non-Gaussian statistics of velocity
differences with decreasing distance. The deviation from
Gaussian behavior may be described by the exponents 0„
of the velocity structure function, defined by (Bvi")—l ",
where 6'vI is a velocity difference over a scale l. In the
absence of the intermittency effects, 8„—(n/2) Oq accord-
ing to the Kolmogorov 1941 (K41) theory of turbu-
lence. Experimental and numerical data from nearly
isotropic turbulence have shown unambiguous evidence
of strong deviations from the predictions of the K41 the-
ory, implying the existence of strong intermittency ef-
fects in the inertial range of turbulence.

Over the past thirty years, various phenomenological
approaches have been developed to describe such inter-
mittency in turbulence (see a summary in Ref. 6). The
earliest is the log-normal model of Kolmogorov and Obu-
khov, which assumes strongly non-Gaussian statistics
for the energy dissipation. The log-normal model, how-
ever, fails to describe high-order exponents when com-
pared to both numerical and experimental data. A more
recent generalization of the log-normal model does not
seem to overcome the basic difhculty. A more popular
model is the so-called multifractal model, introduced by
Parisi and Frisch, which relates 0„, through a Legendre
transform, to a set of fractal dimensions of physical
space structures having a certain characteristic exponent.
Two particular multifractal models, called the random P
model and the p model, ' seem to give a better fit to ex-
perimental data than the log-normal model. ' ' However,
neither the multifractal model nor the log-normal model
addresses the physical mechanisms behind the phenom-
enon of intermittency, so that these models seem arbi-
trary.

In the present Letter, we attempt to construct a physi-
cal model which aims at quantitatively describing the

non-Gaussian probability density function (PDF) of ve-

locity differences across inertial-range distances. This
model is generalized from the one reported previously by
us, ' which has proved very successful in accurately de-
scribing near-dissipation-range non-Gaussian statistics,
namely, the PDF of transverse velocity gradients. This
approach is based on a physical model of the dynamics
of the Navier-Stokes equation, and thus has a clear dy-
namical picture. In particular, we can see the physical
mechanism of intermittency: local self-distortion of tur-
bulence structures in physical space. The resulting PDFs
allow us to calculate the inertial-range exponents
=0„—(n/2)8q, the agreement with both experimental
and numerical simulation results is excellent. When the
exponents O„are interpreted in terms of multifractals
through a Legendre transform, the present model sug-
gests the physics behind multiple exponents.

Denote the velocity difference across a distance I by
Bvl, which will be referred to as the amplitude of eddies
of size l. Consider the evolution of eddies BvI with
near-Gaussian statistics at some scale lg =l+Bl slight1y
larger than l. According to the classical K41 local cas-
cade picture, the eddies will be squeezed by the random
background and the amplitude of these eddies will de-
crease with exponent 2 92= 3 . Eddies that result from
this background squeezing process, denoted by 6v~ when
the eddy size reaches l, will still have Gaussian statistics
with typical amplitude SvI -Svl (I/lg) '~ . We call this
kind of background interaction a mean-field approxima-
tion. This picture is also consistent with second-order
closure theories, where the near-Gaussian statistics has a
precise meaning. We assume that, in the Navier-Stokes
dynamics, the mean-field K41 process is the most dom-
inant one in the sense that most eddies of small to
moderate amplitudes undergo such a cascade. However,
there is an additional process associated with high-
amplitude eddies (large Bv~, hereafter referred to as
structures), namely, coherent self-distortion that leads to
non-Gaussian behavior. We assume that such self-
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distortion may lead to a dynamical exponent h signifi-
cantly smaller than 3 . Thus, for structures, we have

1/3 —
A

lg
Bv( =Bv( — —Bv(

lg I
=Bv( J

Here we introduce the mapping function J=lg/l which
describes the squeezing ratio of the length scale. Note
that J is a mean-history mapping function, following the
spirit of Kraichnan, ' so that (1) is only statistically val-
1d.

To be more specific, consider the Navier-Stokes equa-
tion for the velocity difference:

Df6'v(= —Bv( Vv —VBP+ vV Bv(,

where v= —,
' [v(x)+v(x+r)], D, =t), +v V, and Svi

=v(x+r) —v(x). Staying in a frame of reference which
moves with the mean How v, Bv( will be stretched by the
strain —Vv. Following the above assumption (see also
Ref. 12), the stretching term (including the action of the
pressure) may be separated into two parts: a self-
stretching part with a stretching rate proportional to Bv(
which acts on structures only, and a mean (constant)
stretching part which models the mean-field interaction
between small 6v( eddies.

After replacing molecular viscosity by eddy viscosity
and normalizing, all terms in the Navier-Stokes equa-
tions are of order unity. On the basis of the stretching
model discussed above, we can then write the simplified
equation

Physically, h describes the strength of the local self-
stretching of structures in physical space, and, converse-
ly, the strength of nonlocal interactions in wave-number
space. The total nonlocal contribution in wave-number
space for structures of a given size i —I/ic should in-
crease with k, since the width of the wave-number band
of nonlinear interactions with small wave numbers in-
creases (the interaction with higher wave numbers con-
tributes to eddy damping). Thus, as 1 decreases, we ex-
pect that the deviation of h from 3 may be amplified.

In Fig. 1, we compare two equilibrium PDFs resulting
from the present model with two values of h to the PDFs
of lateral velocity diff'erences at two different length
scales obtained from direct numerical simulations of iso-
tropic turbulence. The agreement is satisfactory. The
comparison also shows that h is indeed a decreasing
function for decreasing length scale.

Assuming that in general h is a decreasing function of
the length scale i at a given (high) Reynolds number, we
can calculate the inertial-range exponents („. An ap-
proximate analytical calculation of the normalized nth-
order flatness yields, for relatively large n,

F, (h) =&8'ui"&/&Bu &" '= (n/2)"

If we define i(h) =e "t t +" for some parameter p, we
readily obtain

&„=—(I/p)n ln( —,
' n) .

D, Bv(=Bv( +6v( —J Bv(, (2')

where J originates from the reduction of eddy size in
the Laplacian (second-order) dissipation term. Then us-
ing (1), we obtain an equation for J:

DJ= f J+J—JIcsvt I IBv, I

C C
(2)

The function f(x) is introduced to account for the fact
that self-stretching only acts on structures. With this
factor f(x), Eq. (2') is generalized so that it also applies
to small-amplitude eddies for which J= 1. The parame-
ter C is a threshold amplitude beyond which self-
stretching is important, chosen' as C=2&(6vi ) &'t .

We can now express the PDF of the turbulent velocity
difference in terms of the Gaussian PDF of Bv( .

.001

.0001

P(6u() =P(bvt )86vt /'d8vt . (3)

We have previously shown' that the equilibrium PDF,
the steady solution of (1)-(3), depends critically on the
parameter h: As h decreases, the PDF becomes increas-
ingly non-Gaussian (flat). In the framework of K41,
where h = —,', it can be easily checked that P(6vi) re-
mains Gaussian and intermittency effects are absent.

FIG. 1. The PDFs of the transverse velocity differences ob-
tained from the steady solution of the model equations (1)-(3)
(dotted lines) at two values of the parameter h, compared to
the PDFs obtained from the direct numerical simulations of 3D
isotropic turbulence of R~=77 (solid lines) at two inertial-
range distances 1. For the inner lines, h =0.26 and 1=0.884,
and for the outer lines, h =0.03 and 1=0.393.
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We can then determine all exponents as a function of the
single parameter p. In this calculation, the second-order
moment is evaluated using an asymptotic formula valid
only for large n (the —,

' nth power of the second-order
moment is the normalization factor for the nth-order
normalized moment). Within this approximation, the
PDFs are exactly self-similar: For a given p, all high-
order moments vary with I in a power-law form. This re-
sult is verified by direct numerical solution of our model
equations (1)-(3). We have computed Pp, (bvl) numeri-
cally for all ——', ( 1t ~ —,

' and found l(h) using the rela-
tion

aiog, .(1) 1 aiog F (1(h))
Bh g 8h

for some, arbitrarily chosen, integer m. We then calcu-
late all other exponents using the formula

81og ~oFn (1(h ) )/Bh
6

aiog o(1)/Bh

Thus, („ is determined up to one free parameter g
similar to p in (4).

The degree of self-similarity depends on the constancy
of g„(l) from (6) with respect to 1. We have verified this
constancy within an accuracy of 2% for all n. ' This in-
dicates that the exact solution P~tI, ~(8vI) of (1)-(3) is
also self-similar to a good approximation. Notice that
although the solution (4) produces exponents very close
to those obtained from (5) and (6) for a range of n, the
trend nln( —,

' n) is not valid for very large n because the

finite error in the analytical evaluation of the second-
order moment, when taken to the —,

' nth power, becomes
very important.

In Fig. 2, we compare our exact exponents obtained by
numerically integrating (1)-(3) and (5) and (6) to
available numerical and experimental data. Data from
direct numerical simulation of isotropic turbulence are
obtained at Taylor microscale Reynolds number R&
=150. The experimental data are for a jet fiow with
Rq=850. The solid curve is the best fit by our model
with an appropriate g~. In both cases, as can be judged
from Fig. 2, the agreement is very good, actually better
than either the log-normal fit or the random-P-model fit.

The multifractal interpretation of intermittency effects
in turbulence appears to be a valuable thermodynamical
description. Extensive studies on the determination of
the fractal-dimension spectrum in laboratory Aows have
been conducted at Yale University. ' So far, there has
not been any physical model explaining the nature of the
multiple exponents. The present work gives a complete
set of („which gives rise to the multifractality. Choos-
ing 02= 3 which is also a free parameter in our model,
we can calculate the fractal-dimension spectrum D(q)
defined implicitly as q =88„/Bn, D(q) =3+nq n92/2—

The result is shown in Fig. 3, where the free pa-
rameter g is fixed at the value which gives the ex-
ponents in Fig. 2. At q = —,', D(q) =3, independent of

When q decreases from —,', the fractal dimension de-
creases below 3. To the limit of accuracy of the numeri-
cal integration, it seems that the exponent q approaches
a limiting value q =0.09, and the asymptotic dimen-
sion D(q ) =1.4. Note that q depends on 82 and
D(q ) depends on (~. We do not expect that they are
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FIG. 2. The scaling exponents of dimensionless velocity
structure functions g„. o, numerical data; a, experimental
data; dashed line, K41 theory; dotted line, log-normal model;
dash-dotted line, random P model; solid line, the present
dynamical model.
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FIG. 3. The fractal-dimension spectrum derived from the
present model for singularities of exponent q ~ —,
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universal. However, it is clear that the physics behind
the multiple exponents is the increasing importance of
self-distortion of high-amplitude eddies which modifies
the behavior of high-order moments differentially. Our
present dynamical model can be regarded as a first step
toward building a statistical-mechanical model for the
thermodynamics of multifractality.

We have not addressed here the question of how inter-
mittency effects modify the second-order exponent of the
velocity structure function. We would like to point out,
however, that in the framework of the present model, a
k energy spectrum could be consistent with the pres-
ence of the intermittency effects.

The authors are very grateful to R. H. Kraichnan, E.
Jackson, and V. Yakhot for stimulating discussions, and
to M. Meneguzzi who has kindly provided numerical
data for comparison. This work was supported by the
Office of Naval Research under Contract No. N00014-
82-C-0451, the Air Force Office of Scientific Research
under Grant No. AFOSR-90-0124, and U.S. Defense
Advanced Research Projects Agency under Contract No.
N00014-86-K-0759.

'A. Kuo and S. Corrsin, J. Fluid Mech. 50, 285 (1971).
2Z.-S. She, E. Jackson, and S. A. Orszag, J. Sci. Comput. 3,

407 (1988).
3A. Vincent and M. Meneguzzi, J. Fluid Mech. (to be pub-

lished).
4A. N. Kolmogorov, C. R. Acad. Sci. URSS 30, 301 (1941).
5F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia,

J. Fluid Mech. 140, 63 (1984).
sB. Castaing, Y. Gagne, and E. J. Hopfinger, Physica D (to

be published).
7A. N. Kolmogorov, J. Fluid Mech. 13, 82 (1962); A. M.

Obukhov, J. Fluid Mech. 13, 77 (1962).
G. Parisi and U. Frisch, in Turbulence and Predictability in

Geophysical Fluid Dynamics and Climate Dynamics, edited by
M. Fhil, R. Benzi, and G. Parisi (North-Holland, Amsterdam,
1985), p. 71.

R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, J. Phys. A
17, 3521 (1984).

' K. R. Sreenivasan and C. Meneveau, Phys. Rev. A 38, 6287
(1988); C. Meneveau and K. R. Sreenivasan, Nucl. Phys. B
(Proc. Suppl. ) 2, 49 (1987).

' 'J. L. McCauley, Phys. Rep. 189, 225 (1990).
'zZ. -S. She, Phys. Rev. Lett. 66, 600 (1991).
'3R. H. Kraichnan, Phys. Rev. Lett. 65, 575 (1990).
'4The integration of (5) is started with a Gaussian distribu-

tion at!=1 (the integral scale). An interval of h is then di-
rectly mapped to an interval of l corresponding to the inertial
range. The accuracy is determined by computing the rms rela-
tive deviation of g„over two decades in l.

1704


