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Renormalization Group for DiH'usion in a Random Medium
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We develop a space-time renormalization-group method to study diffusion in a disordered medium.
We prove rigorously that a random walk with transition probabilities given by a random matrix diffuses
in a Brownian way for weak disorder if d & 2. %'e also show that the disorder induces polynomial decay
of velocity-velocity correl~. ions.

PACS numbers: 44.30.+v, 02.SO.+s, OS.40.+j

Random walks and polymer systems in a disordered
environment have aroused much interest during recent
years. ' While many such systems can be adequately
dealt with using perturbative renormalization-group
(RG) methods, it has also become evident that nonper-
turbative effects can sometimes have drastic effects.
In this paper, we report on a new nonperturbative RG
scheme developed for such systems and on a proof based
on this scheme that diA'usive behavior is stable under a
wide class of local random perturbations. While the full
proof appears in Ref. 5, we shall outline some of the
main ideas here.

In a simple random walk, a particle jumps, at each
time, from one lattice site to a neighboring one, with
equal probability. The resulting motion diffusive, i.e., if
the particle starts from the origin, its position after time
t grows like (Dt)'t, where D, the diffusion constant,
equals 1 in this simple example. Let us assume that one
adds impurities to the system, and that these may
influence the probabilities of jumping from site to site.
Then these probabilities will be written p(x, y) and will

depend both on x, the point that the particle has already
reached, and on y, the point to which it jumps. Since the
locations of the impurities are random, we put a proba-
bility distribution on the set of p(x,y)'s and study the
diffusive properties of the system for typical realizations
of these transition probabilities.

More precisely, let us consider a random walk on Z
described by the transition probabilities p(x,y) & 0
from x E Z to y E Z satisfying

g p(x,y)=1.
yazd

The probability of walking from 0 to x is then given by

P(x, t,p) -p'(O, x) =g p, (co)b„(,) „,
where pt(co) is the probability of a walk starting from
the origin:

p, (co) -+p(co(i —1),co(i)).

A random walk in a random environment is a random
walk where p is a random matrix, taken from some en-
semble P. Given a p, we may define the diffusion con
stant

D(p) = lim D(t,p) = lim —g p, (co)co(t) 2.1

g~ ao OO

(4)

That 0 &D(p) & ~ means that the motion is diffusive.
Actually, in many cases, including the ones below, D(p)
is deterministic, i.e. , does not depend on p but only on
the ensemble P.

Let us describe an example of P's covered by our
analysis. These are the "trapping" environments. We
take

with

1/21+b(x, y). Ix y I
=1,

y =
0, Ix —yI~I,(x )='

gb(x, y) =0.

(5)

b is taken to satisfy the following properties. (1) In-
dependence: We take b(x,y) and b( x', y) to be in-
dependent if xex', the environment is maximally asytn-
metric. (2) Isotropy: We demand that the distribution
of b be isotropic in space, in particular, we have b =0.
(3) The generating function of b satisfies

e tb(x,y) ~ e t 2e2
(7)

for e small.
Thus the randomness is weak. This, however, does not

yet guarantee diffusive behavior, since such asymmetric
environments may form traps. Therefore, we impose a
condition on the probability that the p(x, y)'s are near
zero: (4) For I large,

P«b&p(x, y)((1/2d)e ~l(e ", NcM.
Let us explain this condition. Consider the following

configuration of p's: p(x,y) —p(y, x) —1 —e, p(x,
z),p(y, z') -e, zay, z'wx, and p(z, x),p(z', y)—1/(2d —1). The set D = [x,yl is a trap: It is easy for
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the walk to enter D, but hard to leave. Note that such a
configuration would be impossible in a symmetric model
where p(x, z) =p(z, x). The walk tends to stay in such a
trap for a time T-e, and this could spoil the diffusive
behavior if the average distance between such traps were
—T' . Since this distance is an inverse power of the
probability in (8), we expect that, if the constant I in

property 4 is small enough, the walk will not diffuse.
What is less evident is that property 4 is a sufticient con-
dition for diffusion. Indeed, traps can occur in our model
in all scales since small, long-wavelength, drifts may
"push" the walk into some regions of the lattice. The
RG analysis is needed to study such multiscale phenome-
na.

The model (5) was shown by Sinai to be subdiffusive
in d=l with (x )—C(lnt) . This behavior follows for
all strengths of the disorder due to the traps. This
should be contrasted with the symmetric case studied in

Refs. 6-9, where normal diffusion holds in any dimen-
sion, provided that the disorder has very-short-range
correlations (as here). Also, the continuous time version
of the process on the lattice,

a, P+~P+v (bP),

has been shown to diffuse for all d when the vector field
b is the gradient of white noise. ' In this form, our mod-
el is analogous to

b„(x)b,(y) cx: 8„,6(x —y) .

This model was studied in Refs. 11 and 12, using pertur-
bation theory, which predicts diffusion in d» 2. Subse-
quently, it was shown in Ref. 4 that, allowing a b in (5)
with correlations decaying exponentially (but not too
fast), it is possible to produce subdiffusive walks in any
d. The analysis of Ref. 13 shows that, for weak enough
falloff', such environments correspond to small effective I
in long-distance scales. Our rigorous results do not cover
the whole range of values of I for which diffusion is ex-

pected to hold. See Refs. 1, 13, and 14 for a more de-
tailed discussion of this question.

Let us define the scaling limit of the probability distri-
bution, p„of the walks as the measure v on continu-
ous paths in continuous time, on the interval [0, 1),
defined by

v = lim S']pl~,

where 4, is the operation of scaling of space by t
and time by t '. We have

as i
To explain the RG, let us first recall the scale invari-

ance of ordinary diffusion in IR . If P(x, t) =(x~e' ~0) is

the transition probability in time t from 0 to x, then
P(x, t) =L "P(L 'x, L t). For our walk, the corre-
sponding probability is given by (2). The RG we use is
decimation in time and scaling in space. We fix the posi-
tion of the walk in (2) at times that are multiples of L
and sum over the rest of the walk. Then we scale time
by L and space by L, to obtain a walk with new
effective transition probabilities. Concretely, we write

p(x, t,p) =p'(O, x) =(p ') "(O,x)

=L. 'p', "(o,r. -'x)=I. 'p —", ,p,L

with

p)(x,y) =I.4p' (Lx,Ly)
L2

=I. g Q p (co(i I ), to—(i) )=Rp (x,y—) . (I 2)

pi is a transition probability density for walks on a finer
lattice L 'Z and so it is natural to use the convention
for the matrix product pip|=+, L "pl(,z)pi(z, ),
which explains the various powers of L.

% is the RG transformation: It maps an environment

p to a new one, thereby implementing the scaling. In
particular, for the diffusion constant, we have the identi-
ty

D(t,p) =D(I. 't, Wp) =D(I,R"p)

if t =L ". Hence the long-time behavior of the walk is
understood if we can control the iteration of %.

Since R scales the space by L ', as n~ ~ we obtain
a walk on %". For such walks, % has a line of Gaussian
fixed points given by

Remarks. —The convergence is for arbitrary bounded
continuous functions in the path space. b in (5) is al-
lowed to be long range, with rapid exponential falloff.
The continuous time version of the walk can also be
treated. We expect that our method can be extended to
prove diffusion also in d=2. This would require a more
detailed analysis of the RG.

Moreover, we show that the disorder produces long-
range velocity-velocity correlations. Indeed, one has

(co(0)to(t)) -6(e')/t"'

d v't'(to) co(i ) ' =D(p) . (io) pD (x y) =(2trD/d) — I e dI» vI't2D— —(I4)

We prove the following.
Theorem. —Let d &2. Then the diffusion constant

D(p) takes a constant value DAO for almost all p E P.
The scaling limit is given by the Wiener measure with
diffusion constant D.
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which is just the transition probability density of the
Wiener process with diffusion constant D.

Consider now p given by (5). Let us first compute %p
perturbatively in b:

%p =%P+ (DR)~b+ .
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where p, the mean of p, is given by the simple random walk. This first, deterministic term, on the right-hand side of
(15) converges to the fixed point (14) upon interation, so we need to compute the variance of (DA) b, -

L2 —
1

(DR)-b(x', y') =Ldll gP '(Lx' xP)—' ' '(Ly' y)b—(x,y) .
x,y t=0

(16)

Consider for example the case x'=y'=0. Then, we walk
freely from 0 to x in time t and from x back to 0 in time
L —t. The walk, in time ~ L, predominantly stays in

the L cube 0 at 0, hits a particular x with probability
L at a given time t, and 0 again with probability L
Altogether, summing over L times, we have

(D%) b —t"L-g K(x,y)b(x, y), (17)
xea iy

—x =i

with !K(x,y)! & 1. Being the sum of L independent
random variables, (17) seems to have variance
=CL "e . This calculation suggests that the random-
ness becomes more relevant in longer scales if d &4.
However, we have ignored a very important property of
b, namely, (6): P~b(x, y) =0. We may take advantage
of this in (16) by replacing p ' '(Ly' —y) there by

p
' ' '«y' —y) —p

' ' '«y' x)—
for the terms with L —t —1&0. But, since !y —x! =1,
(18) equals V„p ' '(Ly' —x) and the extra derivative
brings an extra inverse power of L due to the scaling
x~ LX. The variance of DAb thus seems to be —L
times the variance of b. The disorder is irrelevant in

d&2.
The exact computation confirms the above analysis.

However, there is a slight catch. The disorder b(x,y)
will not have small variance pointwise in x and y, since
the scaling we are using in space brings ultraviolet singu-
larities to the problem. These would be removed by a
coarse graining in space, which, however, is not a natural
thing to do, since it would spoil the Markov property of
the walk. The UV singularities turn out to be harmless,
in the sense that p's may be convoluted with each other,
which is all one needs in a random walk.

One might think that the perturbative expansion of
(15) is all we need to control the iteration of %. Howev-

er, this is not the case due to traps in higher scales,
which render the perturbation theory divergent. Indeed,
even if b in (15) was deterministically bounded and
small, i.e., if we did not have any traps in the first scale,
we see from the above computation of DRb that the
latter can be as large as L times b. Hence, traps will be
generated in higher scales. The theory will have two
coupling constants, t. describing the small disorder and I
describing the probability of traps. These will run as

~2 L (2 —d)n~2
&n

and I enters in the escape probability from a unit cube
o containing the point x,

Prob J,p„(x,y)dy & e & L " e . (20)

p(o,y) -e
ly =i

(21)

In the next scale, in case no new traps are created at op
(=1-cube in L 'Z at 0), the probability of escaping
from Op is given in terms of the original walk, in time L,

p 1 (x,y)dy —g pL2(ro) -L'e (22)

since we have O(L ) times to exit from the trap. Thus
the "trap strength" at 0 decreased to N —21nL. This, of
course, is nothing but a recursive way to see that, once
we "wait" long enough, the trap is harmless, as discussed
above. Thus, ignoring new traps, and possible old traps
nearby, the escape probability after n iterations is

", j.e., Nn =N 2n lnL, and

Prob (N„=N ) —Prob (No =N + 2n lnL ) —L ""e

yielding (20).
The full analysis is, of course, more involved. There

may be many traps near our trap, but this naturally is
even more unprobable and brings a small contribution to
the above. There can also be new traps coming from the
effective rates bn. These due to the running e„, come—.L(~-»n
with a probability e ' ", which is an even smaller
correction.

From the RG transformation (12) it is clear that, even
if we started with p which is short range [like the
nearest-neighbor walk (5)], the effective rates p„are
longer range. The true variance of b„will be

b (x y)b (xi i)

(if !y —y'! ) 1). Since independence was a crucial ele-
ment in the analysis of the linear RG, it is useful to lo-
calize the rates as

b„=gb„y,
Y

with b„y and b„y independent if YA Y'=e. Here Y are
unions of unit cubes in R". bY collects terms in a
resummed perturbation expansion from walks scattering
from impurities in the set LnY in the original scale.

By a resummed expansion we mean the following.
The expansion (15) makes sense only if b is small. For b

large, i.e., a possible trap, we do not expand. This
defines a "trapping" region in the lattice where the
bounds (20) are iterated. Eventually, as we saw above,
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!
To understand this Aow of I, consider the typical event
considered above, where there is a single trap, say at the
origin, and no others within a distance e ". Hence, the
probability of escaping from 0 is
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the traps tend to become weak and can be incorporated
in the perturbative analysis. This constitutes the resum-
mation. At each scale, new traps are formed and some
old ones are resummed. The picture of the eAective en-
vironment is the following. We describe it by random
variables b„y with variance as above and the "trap densi-
ty" variables W(x) describing the amount of trap at x, in
the sense of the bound (20). As n~ ~, the traps and
the b„'s disappear and the probabilities tend to the
Gaussian fixed point (14) with probability l.

Finally, the velocity-velocity correlation is dominated
by the walks returning to the origin after time t, which
implies the t behavior.

We believe that a similar RG scheme can be used in
other diffusion problems, such as the classical motion of
a particle in the presence of randomly located scatterers
(the Lorentz gas and its lattice versions), or the Ander-
son tight-binding model for electrons in a random poten-
tial. Upon a suitable coarse graining, such problems can
be related to random walks in a random medium. We
hope to return to these questions in the future.
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