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We present the outline of a new and efficient technique for the calculation of loop amplitudes in a

gauge theory. The technique is based on the technology of four-dimensional heterotic strings. We
display here the application to the calculation of the one-loop corrections to gluon-gluon scattering, in

ordinary dimensional regularization. We find complete agreement with the previous Feynman-diagram
calculation of Ellis and Sexton.
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Perturbative calculations lie at the foundation of our
understanding of physics at short distances. Of special
importance are perturbative calculations in quantum
chromodynamics, because of the present and likely fu-
ture importance of hadron-collider experiments to our
understanding of the standard model and to our hope of
uncovering what lies beyond.

Even at tree level, such calculations are quite di%cult
using the traditional techniques of Feynman diagrams.
(The calculation of the amplitude for the scattering of
two to six gluons, for example, would involve nearly
35000 Feynman diagrams and on the order of 5&&10

terms. ) In recent years, however, several advances have
made possible a variety of multijet calculations. ' These
include the decomposition of amplitudes into sums of
gauge-invariant partial amplitudes multiplied by color
trace factors, the use of the spinor-helicity basis, and
the Berends-Giele recurrence relations. The tree-level
color decomposition" and recurrence relations emerge
quite naturally from string theories.

In this Letter, we present the outline of a new tech-
nique, based on string theory, for calculating loop ampli-
tudes in massless gauge theories, and the results for some
of the helicity amplitudes for the four-point amplitude.
The details of the method as well as a discussion of cer-
tain technical issues will be given elsewhere. The helicity
amplitudes presented below can be used to compute the
O(a, ) corrections to unpolarized gg~ gg scattering,
first computed by Ellis and Sexton; we find complete
agreement for this quantity. In addition, the helicity
amplitudes could be used to compute the O(a, ) correc-
tions to polarized gg gg scattering which have not
been computed previously.

There are several aspects of the method which indicate
its advantages over the conventional diagrammatic tech-
nology. In essence, the starting point —the string ampli-
tude for n-gluon scattering —already sums up all Feyn-
man diagrams, organizes them in a color decomposition,
and performs all momentum integrals, leaving only in-

tegrals analogous to Feynman-parameter integrals to be
done. This bypasses all algebra associated with the large
number of terms generated by the non-Abelian gauge

vertex factors. Furthermore, as the initial expression is a
function solely of the external momenta, polarization
vectors, and color indices (as well as Feynman parame-
ters), it is very well suited to use of the spinor-helicity
basis which reduces the complexity of the amplitude
enormously.

The color decomposition, which emerges from the
string amplitude, organizes the full amplitude into a sum
over certain permutations of color factors times partial
amplitudes. Each partial amplitude is gauge invariant
(under on-shell gauge transformations) and contains
contributions from many Feynman diagrams, eliminat-
ing most of the large cancellations typical of such com-
putations. The new formalism also lends itself to a rich-
er set of consistency checks than does the conventional
one. One has the usual checks: on gauge invariance, on
unitarity, and on cancellation of infrared divergences
against the soft and collinear divergences of (n+1)-
point tree cross sections. In addition, the various gauge-
theory partial amplitudes are related via decoupling
equations; these are the one-loop version of the tree-
level "twist" or "subcyclic" identities.

Although the use of a stringlike reorganization of the
amplitude is by now standard in tree-level gauge-theory
computations, a number of technical complications
might appear to impede the application of such a formal-
ism to loop computations. The most obvious issue is that
of the massless spectrum of the string theory. All string
states which couple to gauge bosons can circulate in
loops; thus one needs control of the massless spectrum of
the string model in order to obtain @CD amplitudes sim-

ply by taking the infinite-tension limit of the correspond-
ing string amplitudes. The technologies for controlling
the spectrum are precisely the four-dimensional string
constructions. With the Kawai-Lewellen-Tye (KLT)
version of this technology, we have constructed examples
of modular-invariant four-dimensional heterotic string
theories ' which contain a pure non-Abelian gauge
theory in the infinite-tension limit. " In fact, a consistent
string is not really needed for practical computations,
but it does serve as a guarantee that no extraneous prob-
lems enter to afI'ect the results.
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A related issue is the decoupling of massive states and
unwanted massless states such as the graviton and dila-
ton. Aside from the dilaton, which requires a more sub-
tle argument, the decoupling of unwanted states is au-
tomatic and straightforward.

Relativistic quantum-mechanical theories in four di-
mensions with massless particles display infrared diver-
gences in on-shell amplitUdes with fixed particle num-
ber. ' This is of course true of string theories as well,
since these divergences have a physical origin. For prac-
tical computations, we require a regularization scheme
that has a known connection with the standard field-
theory regularization of both infrared and ultraviolet
divergences. For this purpose, we have developed a
string version of ordinary dimensional regularization, '

based on the work of Brink, Green, and Schwarz. '"
In order to compute a physical S-matrix element from

a Green's function, one must multiply by a factor of the
square root of the wave-function renormalization Z~ for
each external leg. In field theory, one would simply com-
pute the value of the two-point function. In the string-
based formalism, this issue appears subtle because the
formulation is on shell; and in the on-shell Polyakov for-

mulation, the two-point function vanishes identically.
Furthermore, string amplitudes (with fewer than maxi-
mal number of spacetime supersymmetries) are ill
defined as they contain factors of 0/0 when loops are iso-
lated on external legs. We have performed a detailed
analysis of these issues' and have shown the consistency
of a particular prescription' for handling them. We
may also note that the string ambiguities are ultimately
irrelevant to practical calculations using a dimensional
regularization scheme for all divergences, since the ultra-
violet and infrared divergences cancel, leaving a vanish-
ing result for loops on external legs. (The same cancella-
tion is also used as a prescription in field-theory compu-
tations;' in the new formalism, it is straightforward to
prove its consistency by demanding gauge invariance of
the amplitude. )

While knowledge of string theory is important in
resolving the technical issues outlined above, for practi-
cal computations one can rely on a set of rules presup-
posing ignorance of string theory.

The starting point of the computation of gg gg is
the one-loop N-gluon string amplitude, as given in Ref.
15. Schematically it has the form
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where z is the complex modular parameter describing
the torus which is the one-loop world sheet of the string,
the v; are the Koba-Nielsen variables' describing the lo-
cations of the external gluon vertex operators on the
world sheet (v;~ =v; —v~), and the c; are the ordinary
gluon polarization vectors. The vectors of rational num-
bers a and P describe the choices of world-sheet bound-
ary conditions for the world-sheet fermions. One must
sum over these boundary conditions with the KLT
coefficients Cp. The fermionic Green's functions GF
[and fermionic contributions to the partition function
Zg(r)] depend on the choices of these world-sheet
boundary conditions, while the bosonic Green's functions
G~ (and bosonic contributions to the partition function)
are independent of the boundary conditions.

Performing the integrations over the Grassmann pa-
rameters 0; leads to a result which is multilinear in the
polarization vectors. It immediately gives a color-
decomposed form: a sum of terms, where each term
consists of three pieces; a color factor —one or two traces
of products of color-charge matrices T' (times left-
mover Green's functions), a kinematic tensor —a product
of dot products of polarization vectors and momenta
(times right-mover Green's functions), and a kinematic
core (consisting of the exponentiated bosonic Green's
functions exp[gkk; klG~(vl)]). It is convenient, and
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where the power of p depends on how many unpinched
Koba-Nielsen variables remain. It is only in these limits
that we need the expansions of the Green's function and
partition function. Here we shall not display the explicit
form of these expansions, but will instead give the behav-
ior of typical combinations of Green's functions which
occur in the amplitude.

possible, to integrate by parts with respect to the v; so as
to remove all appearances of double derivatives of the
bosonic Green's functions. The amplitude then has a
uniform positive power of the inverse string tension X sit-
ting in front.

The field-theory limit is simply the limit X 0. In the
case of the four-point function, the amplitude contains
an overall factor of k; thus in order to extract a nonvan-
ishing contribution we must extract two poles in
There are two sources of such poles. One is a pinch of
Koba-Nielsen variables v; —vj 0. In this limit we ob-
tain contributions of the form
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Consider first the color-charge factors (described by
the left movers). For each ordering of the Imv; there is

a distinct contribution, each one of which is trivial. For
example, with the ordering Im v] ~ Im v2 ~ Im v3 ~ Im v4

=Imr one finds in the gauge-theory limit that

ZL GF (v21) GF (v32) GF (v43) GF (v14) ~ N,—

and

Zt GF(V21)GF(V31)GF(v43)GF(v24) 0 i

where N, is the number of colors and Zi is the left-
mover partition function.

The kinematic tensor (described by the right movers)
has a slightly richer structure but also simplifies in the
gauge-theory limit. For example, with the same ordering
of Imv's given above one finds that

ZRGB(V21)GB(V12)GF(V43)GF(V34) Ti (I 2x21)

ZR GB (v21) GB (v32) GB ( v43 )GB (V14) ~ (1/2 ) (2 —BRe) (1 —2x 21) (1 —2x 32) (1 —2x 43 ) (1 —2x41),
(4)

where SR = I for ordinary dimensional regularization. (The sum over world-sheet boundary conditions with appropriate
coefficients is included in these simplifications. ) With x;—= Imv;/Imz, the x;, —=x; —xl are standard Feynman parame-
ters.

The kinematic core results in an expression of the form

d Im z(Im z) '+ ' exp —[s [GB(v1 2) + GB (v34) ] + t [GB(v14) + GB (v23) ] + u [GB(v13) + GB (v24) ]]
2

—I (2+ e/2) [k(sx1x2+ tx2x3+ ux, x3+ tx1 —tx2) ] (5)
Combining the color factor, the kinematic tensor fac-

tors (4), the kinematic core (5), and summing over the
various terms then yields a Feynman-parametrized form
of the full amplitude. The evaluation of these final
Feynman-parameter integrals can then be done by stan-
dard methods.

In the four-point amplitude, there are 43 formally in-

dependent terms, the number of multilinear functions of
the polarization vectors. Physically, however, they are
redundant, because they are related by constraints of
gauge invariance. The entire physical content is con-
tained in the three helicity amplitudes A (+ + + + ),
A( —+++), and A( ——++). (Note that we use the
convention that all momenta are outgoing, that is,
k1 2 (0.) The spinor-helicity basis chooses et+3(k;q)
=&q —

1 y, lk &/~&&q —Ik+&-and e, (k,q) =&q+
1 y1 lk+&/

J2(k+ lq ), where k is the gluon momentum, q is an ar-

bitrary reference momentum such that q =0, k q~0,
and lk+. ) is a Weyl spinor. A judicious choice of the
reference momenta allows us to extract the physical in-

formation eSciently, by forcing many terms to vanish
and by combining others. In the new formalism, the
spinor-helicity basis can be used immediately in the
starting formula, Eq. (1).

At tree level, A (+ + + + ) and A ( —+ + + ) vanish.
Furthermore, only the amplitude associated with a
single-trace term in the color decomposition is needed for
computing the O(a, ) corrections. In computing these
corrections in the original t Hooft-Veltman dimensional
regularization scheme (in which only unobserved—internal, soft, or collinear —gluons are continued to
D =4 —e dimensions), one needs only the dispersive
(real) parts of the partial amplitudes in the physical re-
gion,
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where (ij) =(k; ~kj+), s, t, and u are the usual Mandel-
stam invariants, p is the renormalization scale, Q is an
arbitrary scale, lg(x) =in~x/Q ~, e(x )0) =1, e(x(0) =0, and we have used the modified minimal-
subtraction renormalization prescription. The other
relevant partial amplitudes can be obtained from these
by a relabeling of external legs. The one-loop correction
to the color-summed cross section is then given by

2g (p ) (p ) %p (WP 1 ) g A gagee(o') DlspA one-lo op(o')
o & S4//Z4

heficities

Ellis and Sexton used the conventional form of dimen-
sional regularization where the external (observed) po-
larizations were also continued to D dimensions; in order
to compare our results, we need to include the additional
e helicity states' that arise in this case. We have com-
puted these additional helicity amplitudes, and with
them, find exact agreement with the results of Ref. 6,
Eq. (2.25). This agreement provides the first indepen-
dent complete check on the latter calculation, in addition
to verifying our understanding of regularization and re-
normalization within the string-derived formalism.

The inclusion of massless fermions at one loop in the
new formalism is straightforward. Although the technol-

ogy has not yet been extended to higher loops or to mas-
sive fermions, we expect that such an extension can be
devised.
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