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We study a new type of self-gravitating object, described by a soliton solution to the coupled system of
the Einstein equation and a matter field equation. The solution describing the self-gravitating object is
not static but, instead, is periodic, with both the spacetime geometry and the matter field oscillating in
time. In particular, we show that a system described by a real scalar field g**¢.,., — m2¢ =0 admits such
a solution, which is stable under perturbations. The existence of such objects could have important im-

plications for astrophysics and cosmology.
PACS numbers: 95.30.Sf, 04.20.Jb

It has been long known that classical field theories'™
admit nontopological soliton solutions, i.e., solutions
which have finite and nonzero masses, confined to finite
regions of space for all time, free of singularity, and
which are nontopological in nature.® The recent surge of
interest in these solutions stems from the dark-matter
problem in cosmology. It is by now well accepted that
visible, baryonic matter can account for only a small
fraction of the total mass of the Universe, and there are
strong indications that the dark matter is nonbaryonic in
nature. Various kinds of nontopological soliton config-
urations of nonbaryonic matter have been proposed and
studied for their possible astrophysical roles. These in-
clude’ (i) Q-balls,? (ii) scalar soliton stars,® and (iii) bo-
son stars. %12 They are configurations made up of com-
plex scalar fields, through nonlinear couplings of the sca-
lar field to itself, to other matter fields, or to gravity. It
has been argued that such solitonic solutions to the clas-
sical field theories are possible due to the existence of
conserved Noether currents®® in the theories. In the
cases (i)-(iii) above, the conserved current is a result of
the global U(1) symmetry of the complex scalar fields. '3
It has been believed that, e.g., in the case of a real scalar
field,? because of the absence of such a symmetry there
is no nontopological soliton solution.

In this Letter we investigate the existence of soliton
solutions for classical field theories without an explicit
conserved Noether current. As an example, we show
that a massive real scalar field satisfying the Klein-Gor-
don equation can form a self-gravitating solitonic object
when coupled to Einstein gravity. Unlike those in the
cases (i)-(iii), this new class of objects is not static, but
rather, is periodic in time.'* We call such objects oscil-
lating soliton stars, emphasizing their possible astrophys-
ical role.

As a simple example of an oscillating soliton star, we
consider a massive, real Klein-Gordon scalar field, cou-
pled only to gravity. In the absence of angular momen-
tum, we expect the soliton solution to be spherically sym-

metric. The metric can then be written in the form
ds?=—N2(t,r)dt*+g*(t,r)dr’+r2da?.
The coupled Einstein-Klein-Gordon equations lead to
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where an overdot denotes 9/9¢ and a prime denotes 9/9r.

It is tempting to search for time-independent solutions.
However, the pseudovirial theorem of Rosen'® implies
that no such solution is possible in the Newtonian limit,
and in the strong-field case it has been shown numerical-
ly in Ref. 4 that no nonsingular solution exists. All
known static solutions to the system (1)-(3) either have
singularities'® or are topologically nontrivial.!”

We find that there exist nontopological solitons de-
scribed by periodic solutions. The structure of the Egs.
(1)-(3) suggests periodic expansions of the form

N2(t,r) =14+ 2 N1j(r)cos(2jwot) ,
Jj=0

g2, r) =1+ 2 g5;(r)cos2jwot) ,
Jj=0

o(t,r)= Zl 02j—1(r)cosl(2j— 1 wot] .
/=
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We put these expansions into Egs. (1)-(3), set the co-
efficients of each Fourier component to zero, and obtain
a system of coupled nonlinear ordinary first-order dif-
ferential equations for N,;(r) and g,;(r), and second-
order differential equations for ¢2j-,(r). The boundary
conditions are given by the following requirements:
(i) Asymptotic flatness requires Nj;(o0)=g,;(c0)
=¢,;+1(0) =0. (ii) At r=0, the absence of a conical
singularity implies g2;(r=0) =0. (iii) The requirement
that the metric coefficients be finite at »r =0 implies that
(d/dr)¢,j—1(r=0)=0. This is an eigenvalue problem:
Is there a nontrivial solution to the set of ordinary
differential equations satisfying the above boundary con-
ditions for some particular values of N;;(0), ¢;—1(0),
and wo? An analytic solution is clearly impossible. To
proceed, we truncate the system of equations after a cer-
tain maximum j=jnax, numerically solve the eigenvalue
problem, and study the convergence of the series as a
function of j=jn.x. We find that for each value of
#1(r=0) there exists a set of values for the other initial
data such that a solution satisfying the appropriate
boundary conditions at r=oco exists. A typical radial
metric function g2(t=0,r)—1, for the case of
$1(0) =0.20, is plotted as a solid line in Fig. 1, while the
individual components g,;(r) are plotted as dashed lines
for the first few values of j. The convergence of the
series expansion is manifest. We also show the scalar
field energy densities (as measured by an observer at

015 0.020

0.015

o
—
o

Kusua(q A31ouyg

e
=)
o

Expansion of grr

0.05

0.005

0.00

L L

0 5 10 15 20 25
Radius

FIG. 1. A typical solution to the truncated eigenvalue equa-
tions (fmax =2) of the metric quantity g, is shown (left vertical
axis) for a solution with a mass M =0.562M 3j,nex/m. The solid
line shows g, —1, while the dashed lines show the first three
terms of its cosine series expansion. This rapid convergence of
the series is typical of all the configurations we have calculated.
The energy density p is plotted (right vertical axis) at several
times wot =0,7/2,n as solid, monotonic decreasing lines, show-
ing explicitly the intrinsic oscillations. The two lines marked
p(0,7), corresponding to times wot =0, 7, coincide exactly.
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fixed radius r) at wot =0, 7/2, and x. In Fig. 2 the mass
M of the star is plotted against the radius containing
95% of its mass. This mass curve is similar to those of
white dwarfs, neutron stars, and boson stars, with a max-
imum mass given by M, ==0.6M Biana/m. For a scalar
field with a mass m =10 "3 eV (e.g., an axion), we have
M,.=1.7x%10% kg, and the 95% radius is 14 cm.

We note that this oscillating soliton solution cannot be
obtained as a post-Newtonian expansion, even for those
weak-field configurations having small total mass M and
large radii. In the Newtonian expansion time derivatives
of the metric functions are treated as one order higher in
smallness than spatial derivatives. This is not true for
oscillating soliton stars, for which temporal derivatives
are of zeroth order (8/9¢ = wo==m). The oscillation is
an intrinsic character of the solution.

With the construction of the solutions above, two im-
portant issues concerning their behavior arise immediate-
ly. First, given the explicit construction of the first few
terms in the expansion, one would like to investigate the
importance of the rest of the terms which were neglect-
ed. Second, it is important to know whether the solution
is stable with respect to perturbations.

Both of these two issues can be addressed in one
stroke, by dynamically evolving the system in time, using
the solution to the truncated eigenvalue problem as an
initial configuration. Such an initial configuration can
be regarded as an exact oscillating soliton solution with a
small perturbation resulting from the truncation. We
developed a 3+ 1 numerical relativity code similar to the
one described in Ref. 11 for the dynamical evolution. In
Fig. 3 we show the results of one such evolution, using
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FIG. 2. The total mass M of the oscillating soliton star (in
units of M2jnq/m) is plotted as a function of its radius R (in
units of 1/m). The squares represent actual configurations re-
sulting from solutions to the eigenvalue equations.
Configurations to the right of the maximum mass M = 0.6
are stable, while those to the left are unstable.
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the truncated solution described in Fig. 1 as the initial
configuration. The system settles down after a time ¢
~300. The Fourier power spectrum of the resulting
configuration is shown, where the Fourier transform of
g2ax has been plotted, with g2, being the spatial max-
imum value of g2 on a given time slice (cf. Fig. 1).
Compared to the original truncated solution, the first few
Fourier coefficients of this final configuration are slightly
readjusted, while higher-order coefficients are clearly de-
creasing rapidly.

To further demonstrate the stability and physical real-
izability of the oscillating soliton star, we consider a
configuration where the scalar field is initially a Gauss-
ian, centered at the origin, with a total mass of M =0.52.
The subsequent evolution is followed up to ¢ =14000.
We find that the initial configuration gradually settles
into an oscillating soliton star, with a decaying overall vi-
bration superimposed on the intrinsic oscillations. This
evolution is illustrated in Fig. 4 where we plot the
coefficients a, and b, of the expansion

g2 ()= i [a, cos(nt) + b, sin(nt)],
n=0

with g2ax(z) defined above. The overall vibration of the
star has frequency of @y =0.0196 (the leftmost peak),
which is much lower than the intrinsic oscillations, nwo.
From the shift in the positions of the peaks of the sine
coefficient b, with respect to the cosine coefficient a,, we
can read out the decay time scale of this vibration to be
74=2.0x103. The absence of any shift in the position
of the peaks for the intrinsic oscillation frequencies also
substantiates that these oscillations are stable, at least as
far as ¢ =14000, which is many orders of magnitude

10%
10° \{
|
l“
0% |
\«// \
,7’ \\‘\
10 'k \X\N\‘ E
F A WW\N 1
A o
2 6 8 10

(0]

FIG. 3. The Fourier amplitude of the spatial maximum of
the radial metric function g, is plotted for the evolved config-
uration shown in Fig. 1. There is a strong peak at o =1.87,
followed by successively weaker and weaker peaks at higher
frequencies. Rapid convergence is clear.

longer than the intrinsic oscillation time scale 2.

A few concluding remarks are in order. Although we
have not proved analytically that the series represents an
exact solution to the Klein-Gordon-Einstein system for a
massive scalar field,'®!® we have given strong evidence
that the series indeed converges rapidly, both by con-
structing numerical solutions to the eigenvalue equations
(Fig. 1) and by considering the Fourier spectrum of
evolved configurations (Figs. 3 and 4). It is still possible
that the solution is not strictly periodic, but just quasi-
periodic in time (in the same sense as binary stellar sys-
tems), with a secular evolution time scale many orders of
magnitude longer than that of the oscillation period. We
have demonstrated that the solution is stable with
respect to a wide variety of radial perturbations and is
the final point of evolution of an initial Gaussian distri-
bution (Figs. 3 and 4). Nonspherical perturbations,
which would produce gravitational radiation and which
could affect the stability of the star, will be considered in
future work. Preliminary study shows that it can be
formed under very general initial conditions, e.g.,
through collapse due to a Jeans instability. Therefore,
even if the object is just quasiperiodic, the existence of
this new type of self-gravitating object could have
significant cosmological and astrophysical implications,
as many dark-matter candidates are described by real
scalar fields, e.g., the axion?® and the pseudo Higgs bo-

L0081 A A LA
.007 Algﬂ
L t »5;
i 10
.006+ H \
a6l -~
JilO E ~— ai
.005- I —— ]
1110 't e =
1 Ve b
.004, J ‘\10-8% \» n
003- lo% |
a/i \ £
n | “ L v TS SO SV W)
QOZF ,\‘ 2 4 ?D 8 10 12.

016 020 024 058 032
w

FIG. 4. The absolute value of the Fourier sine and cosine
coefficients are shown of g, max for the initial Gaussian con-
figuration discussed in the text. The peaks at wy =0.0196 cor-
respond to the lowest vibration frequency of the oscillating soli-
ton star, and the peaks at @ =0.39 correspond to the first over-
tone. Inset: The higher-frequency peaks are the fundamental
oscillations of the solution. The banded structure of these
peaks results from the superposition of the vibration, i.e., peaks
in the bands have spacing wy.
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son.?! On the one hand, the existence of such objects

gives rise to the possibility that the dark matter is made
up of oscillating soliton stars, and, on the other hand, the
condensation of, e.g., axions or pseudo Higgs bosons into
very compact, high-density oscillating soliton stars may
significantly enhance their annihilation rates, which
could in turn rule them out as dark-matter candidates.
Whether one of these interesting possibilities turns out to
be the case hinges on the formation process of the oscil-
lating soliton stars, and will be discussed elsewhere.
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