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New Class of Level Statistics in Quantum Systems with Unbounded Diffusion
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We point out a new class of level statistics where the level-spacing distribution follows an
inverse power law p(s) —s ~, with P= —, . It is characteristic of level clustering rather than level repul-

sion and appears to be universal for systems exhibiting unbounded quantum diffusion on 1D lattices. A
realization of this class is met in a model of Bloch electrons in a magnetic field, where we find a purely
diffusive spread of wave packets without the quantum limitations known from chaotic systems like the
kicked rotator.

PACS numbers: 05.45.+b, 03.65.—w, 73.20.Dx

Level statistics is a well established tool for the study
of quantum systems with a complex structure of excited
states, e.g. , systems that are chaotic in the classical lim-
it. ' Depending on symmetry properties of the Hamil-
tonian, one distinguishes three universality classes. Level
repulsion causes a power-law behavior p(s) —sP of the
probability density of the nearest-neighbor level spacings
s, where P =1,2, 4 and s 0. The stiffness of a spectrum
can be determined from a quantity 53(L), which, e.g. ,

grows logarithmically in L for systems belonging to the
Gaussian orthogonal ensemble (GOE). ' In the present
Letter we extend this concept to a new class of systems
which show some type of level clustering rather than lev-

el repulsion. We found a level-spacing distribution p(s)
which follows an inverse power law p(s) —s P, with
P= 2 . The 53(L) statistics for the spectral stiffness
follows another power law d3(L) —Lr, with y=1.493

0.002. A heuristic argument, whose validity is
verified numerically, indicates that the exponent P = —,

' is
universal for quantum systems with unbounded diffusion
in one dimension.

As a physical example we consider the dynamics of
electrons in a crystal lattice subject to a homogeneous
magnetic field. We have previously treated the classical
limit of this problem, which can be approached in lateral
surface superlattices (LSSLs) on a semiconductor
heterojunction. There we found normal and anomalous

diffusive motions caused by the chaotic dynamics of the
particle. On the other hand, this is a quantum-mech-
anical system, where we may ask for the quantum ana-
logs of the chaotic diffusion. This question was studied
intensely for the kicked rotator, where the classical
chaotic diffusion is mimicked by the quantum system
only initially. ' After a finite time, quantum interfer-
ences impose a finite bound on the diffusive growth of
the variance (quantum limitations of diffusion). In the
present context we show that the inverse power law
p(s)-s I can be understood, if we assume unlimited
diffusion of the quantum-mechanical wave packets. The
assumption is confirmed by a numerical simulation ex-
hibiting a purely linear (diffusive) growth of the vari-
ance. This strongly contrasts the behavior previously
known from the kicked rotator.

We study the level statistics of Bloch electrons in a
magnetic field 8 in the framework of the Peierls substi-
tution, which leads to a discrete Schrodinger equation in
a quasiperiodic potential (Harper's equation)

y„+~+ y, —~+A cos(2ttna —po) y„=Ey„,

where y„ is the wave function at site n and A, =2. The
dimensionless parameter o =a e8/hc gives the number
of Aux quanta per unit cell of area a and determines the
incommensurability of the system. For comparison, we
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p(s')ds',

whose derivative p(s) = —dp;„i/ds determines the proba-
bility density of level spacings s. These functions can be
normalized by introducing a lower cutoff' sp&0. The
level spacings s are normalized to mean spacing 1.

The levels and their spacings are obtained numerically
with the use of transfer matrices Mi(n, E) 'One c.an
replace Eq. (I) by a matrix equation

Pn+ j

Pn

Pn
=M, (n, E)

, Pn —
1

will also consider cases A, &2, as it is known that X =2 is a
critical case separating a regime of extended states
(A, ( 2) from a regime of localized states (A, & 2) for irra-
tional a; ' For X, =2, the states are neither localized nor
extended and the spectrum is a Cantor set. " Consider-
ing it as a perturbation, the incommensurate potential
breaks translational symmetry, lifts the twofold degen-
eracy, and introduces a dense set of gaps into the tight-
binding band E(k) (see, e.g. , Fig. 1). For cr a Liouville
number, the spectrum is singular continuous. '

At first sight it seems impossible to do level statistics
on an uncountable set of levels such as the Cantor spec-
trum. We observe, however, that all energies are bound-
ed (Fig. 1) and that one can count the number of energy
gaps larger than some size s. By varying s we thus can
obtain an integrated level-spacing distribution (ILSD)
apart from normalization

expansion. For a=p/q, the potential is periodic with
period q. We thus analyze the matrix product

q
—I

M (E) = II Mi(n, E),
n 0

(s)

which transfers the states (yo, i' —i ) into the states
(iver~, y~- i). According to the Bloch theorem,
=e' y„and thus M~(E) has eigenvalues e —'", i.e. ,

Tr M~ (E) =2 cos (kq) .

This leads to the condition ~TrM~(E) ~

~ 2, from which
one can determine the allowed eigenvalues E of Eq. (1).
The eigenfunctions at sites n =0 and —1 form the corre-
sponding eigenvectors of Mq. The eigenfunction at site
m is obtained by inultiplying with the matrix M (E).

Figure 1 illustrates the spectral changes, i.e., the al-
lo~ed energies as a function of X, for an approximant of
the golden mean oG =(JS—1)/2. Energy levels indica-
tive of the localized regime on the right-hand side
(X )2) turn into pronounced bands in the extended
regime (A, & 2). As )i, decreases towards X =2, the
magnetic-field case which we will consider henceforth,
the levels arrange in clusters and form a self-similar
hierarchy. If we apply the concept of the spectral stair-
case function N(E) of level statistics' to this spectrum,
we obtain a complete devil's staircase. The integrated
level-spacing distribution Eq. (2) is shown in Fig. 2 for
X=2 and two diff'erent rational approximants o of the
golden mean o.~. It clearly displays an inverse power
law

where
r

E —k cos(2irncr —po) —1

0

pini(~) (7)

and thus the level-spacing distribution (LSD) behaves as

We approximate the irrational incommensurability o. by
successive rational convergents of its continued-fraction

p(s) -s
where P=1.5009+ 0.0010. This equation expresses the

10' =

10
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IO
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FIG. l. Allowed energies as a function of the parameter k
for a rational approximant o= 55 of the golden mean. The
magnetic-field case (A, 2) is at the transition between regimes
of extended states (A, & 2) and localized states (X) 2) for in-
commensurate a. As X approaches A. =2 from above, the levels
arrange in clusters.
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FIG. 2. Integrated level-spacing distribution (X =2) for two
approximants of the golden mean displaying an inverse power
law p;„&—s' ~, with P=1.5009+'0.0010. As is seen the lower
cutoft' of the scaling region decreases for higher approximants.
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FIG. 3. A3 statistics for k =2 and cr =6765/10946. A least-
squares fit (straight line) yields tt3(L ) —L ", with y
=1.48+ 0.06, in accordance with Eq. (9) (@=I+D2=1.493
~ 0.002).

self-similarity of the structure of gaps. Unfolding the
spectrum by a smoothened spectral staircase as in other
cases would not change the power law, as the spectral
fluctuations remain self-similar on all scales. In Fig. 2
the ILSD levels off at a small value so, since for all ra-
tional approximants of og the total number of gaps is
finite. The cutoff so, however, can be shifted to arbitrari-
ly small values for higher approximants. The LSD of
Eq. (8) behaves very differently from Poisson, Wigner,
and intermediate distributions found in other systems. '

The increasing probability for smaller spacings indicates
what we call level clustering (see also Fig. 1).' This
property is more pronounced in another quantity, ' the
probability density p(x) defined by the conditional prob-
ability of finding a level in [xo+x,xo+x+dx], if there
is a level at xo and no level in ]xo,xo+x[. For a Poisson
distribution, one has p(x) =const corresponding to in-
dependent level positions. For a Wigner distribution,
p(x) —x refiecting the repulsion of levels. In our case
we have found p(x) =(P —1)x ' expressing a prefer-
ence of clustering other levels in the vicinity of a given
one. This property also affects the A3 statistics of the
spectrum shown in Fig. 3. We find that A3(L) closely
follows a power law 53(L)—L", with 7 =1.48+ 0.06, in
clear contrast to a Poissonian spectrum (L/15) and
random-matrix theories (lnL). ' The spectrum thus is
even less rigid than a Poissonian spectrum.

Of course, one would like to understand what causes
this new class of level statistics. In accordance with
random-matrix theories, we have degenerate levels here
that are split by the perturbation. In distinction, howev-
er, the degeneracy is not accidental, but systematically
twofold (for states k and —k). The matrix elements of
the perturbation therefore are not random, but are due
to the quasiperiodic potential. Besides, neighboring
splittings of levels are not independent, but affect each
other as levels are nowhere isolated. ' The exponent P of
the LSD can be related to the fractal dimension Do of
the spectrum. It is possible to show' that Do=p —l.

The numerical value of P appears to be largely indepen-
dent of the incommensurability o.. ' The fact that A, =2
is the critical point of the delocalization transition sug-
gests that p= —', is a universal exponent. There are re-
normalization techniques for Eq. (1), ' ' but local
scaling properties (e.g. , near E=O) are not sufficient to
explain the global power law Eq. (8). In fact, it was
found that the spectrum is a multifractal. We can re-
late the number statistics' n(L), which counts the num-
ber of levels in an interval of length I., to the multifractal
scaling properties. For the moments of their distribution
weshow '

(9)

where Dv are the generalized dimensions. From Eq. (9)
we obtain As(L) —Lr, with ) = 1+Di. A numerical
determination of D2=0.493+ 0.002 yields an improved
value of y consistent with Fig. 3 and shows that y is
different from 2 .

The global character of the exponent p asks for a glo-
'

bal argument for its explanation. We can give a heuris-
tic argument similar in spirit to arguments developed by
Allen and Chirikov, Izrailev, and Shepelyansky for lo-
calization problems. We consider successive rational ap-
proximants cr; p;/q; of the continued-fraction expansion
of o. If we want to resolve the spectrum with a finite
resolution only, it suffices to confine the potential to a
finite interval of length q;. On this length scale the
periodicity of the potential is not manifest and we may
assume that a wave packet moves diffusively inside, i.e.,
(x (t))—2Dt. The maximum distance q; to be traveled
defines a longest time scale r—q; /2D and a smallest en-
ergy difference between levels s —ft/r. The number of
states living in the interval is —q; and thus determines
the number of states with spacing hE ~ s, whence
pint(&) —q;-(2D&) ' =(2D&) 't s 't . For a refined
energy spectrum consider the next approximant p;+ &/

q;+&, where again the potential looks random within a
period q;+ &. Repeating the argument yields the observed
LSD Eq. (8) on all scales.

This argument reposes on the assumption of diffusion,
to be repeated on all length scales. It suggests that the
exponent p= 2 is universal for systems showing un-= 3

bounded quantum diffusion in one dimension. A more
rigorous argument of Guar neri concludes that the
spectrum must be singular continuous and allow only
values of P~ —', . The assumption, however, is not obvi-
ous in our case. In particular, one might also expect that
the diffusive growth is nonlinear in time. This motivated
us to analyze the time evolution of a wave packet p(t)
released at site 0, using the eigenenergies and eigenfunc-
tions obtained above. Figure 4 shows the variance

q;/2

tr'(t) = g n'~y„(t)~' (10)
n —q;/2

for three different values of X in a finite lattice of
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FIG. 4. Time evolution of the variance of a wave packet, Eq.
(10). In the case X=2 the spread is purely diffusive [o'(t)
—2Dt].
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