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Amplification of echo signals in ordered magnetic materials was postulated by many authors in the
middle sixties. However, theoretical estimates of amplification were invariably several orders of magni-
tude higher than observed in ferrimagnetic materials. We have reformulated the equation of motion to
include the nonlocal dipole-dipole interaction to describe the dynamic response of an echo. Our esti-
mates of amplification compare reasonably well with measured values.

PACS numbers: 76.50.+g

Ferrimagnetic echo phenomena were reported in
cylinders and truncated spheres of yttrium iron garnet
(YIG) crystals by Kaplan and co-workers' and in
single-crystal YIG films by Bucholtz, Webb, and
Young. Echo experiments offer the possibility of a nov-
el approach to performing important signal processing
functions such as nondispersive time delay and pulse
correlation in the frequency range below 10 GHz. With
the demand of electronic technology advances there is
also a renewed interest in the use of ferrimagnetic echo
devices. Earlier theoretical work was successful in argu-
ing for the presence of ferrimagnetic echoes and the pos-
sibilities for arnplification. However, quantitative pre-
dictions of the amplification factor ranged between 1 and
2 orders of magnitude greater than observed. The pur-
pose of this paper is to improve upon the predictability of
the amplification factor in ferrimagnetic echo devices.
The basic difference between previous and our theoreti-
cal formulations of ferrimagnetic echoes is as follows. In
the former formulation the nonlinearity introduced in
the equation of motion was due to only local field in-
teractions. In our formulation we include the long-range
dipole-dipole interaction in the nonlinear coupling term
which is nonlocal in nature. Clearly, in the regime of
very short delay times the two formulations predict the
same result, since the time elapsed is too short to allow
for long-range interactions to be effective. For example,
in this limit we identify the parameter q, which was in-
troduced ad hoc from earlier formulations, in terms of a
physical quantity. However, for long delay times the
previous formulations are simply not appropriate due to
the exclusion of the long-range dipole-dipole interaction.

We consider a single-crystal YIG cylinder of rec-
tangular cross section and infinite length. The dc field is
applied along the cylindrical axis and a constant gradient
of the field is assumed. These assumptions are purposely
chosen to simulate the experiments presented in Refs. 1

and 2. Instead of linearizing the Gilbert equation we ex-
pand the equation to third order in I and obtain

m =ix [(Ho+Gz)m —(1 —m m/2)(h +h, )
—AV m+Am]. (1)

Here magnetization and fields have been normalized
with respect to M„ the time has been normalized with
respect to (yM, ) ', A is the exchange constant, X is the

Gilbert damping constant normalized with respect to
yM„and M, and y are, respectively, the saturation
magnetization and gyromagnetic ratio. We denote h, as
the externally applied rf field and h as the dipolar field
associated with the transverse magnetization m, and I is
related to the total magnetization M by the following re-
lationship:

M =M, z+m,
with

M, =l —m mj2.
In Eq. (1), Ho denotes the uniform dc nonspatially
dependent internal field which is superimposed by a con-
stant gradient field Gz with G being normalized with
respect to M, . In deriving Eq. (1) we have made the fol-
lowing assumptions. For long-wavelength excitation the
exchange field is small and in YIG the damping field is
small, so that only linear terms in these fields are kept in
Eq. (1). Anisotropic fields are omitted in Eq. (1), since
Ho is applied along a cubic major axis. Also, for YIG,
anisotropy fields are small compared to demagnetizing
fields. We ignore the demagnetizing field in the z direc-
tion by assuming the sample to have a very long axial
length. It can be argued that the nonlinearity due to the
dc demagnetizing field, which is closely related to Suhl
instability, will reduce echo gain and should be avoided.
Further discussion in this regard will appear in a future
paper. Finally, we have omitted the second-order term
(h~+h, ),m in Eq. (1). The reason is that, as we may
verify from the following derivations, (h ), and m pos-
sess opposite polarities in x and y and will have vanishing
effects on the equation of motion after they have been
averaged over the sample's cross-sectional area. We as-
sume h, to be a transverse field; hence, (h, ), is negligi-
ble by design in an experiment. We note that it is gen-
erally recognized that the nonlinearity must be of an odd
order in order to generate an echo.

Under the magnetostatic approximation the dipolar
field can be written in the form '

h =VS'V m,
where the Green's-function operator 0 is defined, upon
operation on a regular function f(r), as

1Qf(r) =„dr', f(r').

1626 1991 The American Physical Society



VOLUME 66, NUMBER 12 PHYSICAL REVIEW LETTERS 25 MARcH 1991

We make the following definitions:

B —=- B/Bx + iBIBy,

hp= (h )„+i(h, )», a—=m +im» .

Equation (1) can then be rewritten as

a=i [(Hp+Gz)a
—(1 ——,

' lal')(-,' B+eB-a+ —,
' B+SB+a*+hp)

—AV a+Ra].
Assume Eq. (2) possesses a solution of the form

a(r, t) =a(z, t)sin(xx/a)sin( tyr/b), (3)

This implies that nonlinear terms involving X and A orig-
inally ignored in Eq. (1) shall be retained in Eq. (2).

Equation (2) can then be written as

a=i (Hp+Ap )a —A +RaB a
Z2

2 2

(1 ——,
' lal')(h, +h, ) — (1 —

—,
' lal')h. ,

(4a)
where h

~ and h q are defined as

P Oo

dz'e ~~' ' ~a(z', t),J —oo

f oo

hz =—— q dz'e ~ ' ' a(z', t)*.
~p J —oo

(4b)

(4c)

The nonlocal effects are expressed in the above two
fields, h l and h2. In the limit that p goes to infinity the

with a and b being the lateral cross dimensions of the
sample. Equation (3) corresponds to solutions which
minimize the exchange energy, and, under uniform rf ex-
citations, Eq. (3) represents the closest approximation of
the real solution possessing definite k and k~ values
satisfying boundary conditions at the sample boundaries.
Nevertheless, it can never satisfy Eq. (2) rigorously,
since the nonlinearity in Eq. (2) will couple the above
solutions to other higher-order modes of k and k~
values. However, since the nonlinearity is small, we may
assume Eq. (3) satisfies Eq. (2) in the sense of an aver-

age, i.e., Eq. (3) is substituted in Eq. (2) which is then
followed by taking the average over the x and y dimen-
sions. This is the only approximation that we will make
in this theoretical treatment. This approximation is
roughly valid if the excitation power of the signals is not
too high. Under high-power excitations, energy will be
significantly transferred from the lowest excitation state,
Eq. (3), into higher-order modes, and Eq. (3) can still be
adequately used if the damping constant A. in Eq. (2) is
modified by including a power-dependent term:

~- [1+O(lal')]~.

1

lr —r'l 2&2 & all space

ik (r —r')
&e

k

In the following we will omit the dipolar field h2 by as-
suming a = b and hence q = 0. This corresponds to the
general circular-precession approximation imposed in the
normal linear-mode calculations and is equivalent to
neglecting the third Holstein-Primakoff transformation
for ordinary spin waves. " Non-circular-precessional
fields will have a profound effect on echo amplification if
the sample possesses very different lateral cross dimen-
sions.

Suppose the excitation field is of the form

hp(t) =A pb(t)+ epii(t+ r),
where Ap and ep («1) are the amplitudes of the pump
and the signal pulses applied at t =0 and t = —i, respec-
tively. Under the above excitation the solution of Eq.
(4a) may be written in the form

a(z t) =e(t)[Ae' "+eyi(t)e' "+'
+ey (t)e' '" '] (s)

such that Eq. (4a) becomes separable in the variables z
and t at least up to first order in e. Integrating Eq. (4a)
from t =0 to t =0+, and from t = —~ to t = —r+
the integral-differential equation can be treated as an
initial-value problem satisfying, for t &0, the following
equation:

a =i [(1+i7L) (Ho+ Ap ) +Gz] a —A
B a
BZ2

2—"h, (1+v —l lal') ',
with the initial values

e(0) =1, yi(0) =1, yp(0) =0.
In the above we have set the phases of the initial values
arbitrarily to zero. The two parameters A and e are re-
lated to the excitation amplitudes Ap and ep in the fol-
lowing way:

lepl =
x 1 —A /32
4

(7a)

(7b)

and we have assumed k«1 in writing Eq. (6). The

integrations in the above expressions are over narrow re-
gions. Hence, h ~ and hz could only represent some sort
of local field. p and q are defined as

p =[(n/a)'+(zjb)'] ' '

q = [(trja ) —(tt/b ) ] ' '
In deriving Eqs. (4a)-(4c) we have used the expression
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detected output is the averaged value of h ].
—4 "L dz(h|) = Iim P e

—Pl~ —z'la(z')dz'
L —~ z 4 L2L4

The echo gain may be expressed as

gain =2trW(l) Ip2(l) lexp( —vz) .

= ( —8/tt)(a&.
The echo gain is, therefore,

(8)
Note that in Eqs. (I la)-(I lc) the time variable has
been normalized with respect to the pulse delay time ~
and the parameters 8, g, and I are defined as

gain =2ttI+(r) y2(z) I . (9)
The dipolar field associated with expression (5) can be
written as

—8p iGzt iGz(i+ r)
hi(z, t) = p e'(t) 2 +eyi(t)

x p —iGt p iG(—t+ z

iGz(t —r)
+ ey2(t)

p —iG t —z
(10)

1+g t
(I la)

Before proceeding further we notice here that, since
only the averaged value of a matters in the final answer,
Eqs. (8) and (9), the linear terms in hl in Eq. (6) may
be replaced by ( —8/x)a to simplify the following calcu-
lations. Furthermore, we may translate the origin of the
z coordinate such as to cancel the linear terms in a pos-
sessing pure imaginary coe%cients. The effective dc field
is, therefore,

Hdc =Hp+ Ap +2z,
where the last component 2x can be visualized as the rf
demagnetization associated with the transverse directions
of the sample (N„=N~ =

2 ). We introduce the param-
eter vas

v =Hdqrs .
Note that Hd, determines the location of the active re-
gion of the sample and hence the carrier frequency of the
excitation pulses. After expressions (5) and (10) have
been substituted in Eq. (6), one may set the coefficients
corresponding to exp(iGzt), exp[iGz(t + r)l, and
exp[iGz(t —z)] separately to zero and, after some
mathematical manipulations, one obtains

W(t) = I,
p~(t) =coshpt+ [(8—I )/p]sinhpt,

y2(t) =(—ir/p)sinhpt,

where

p—= [8(2r —8)]'".

(12a)

(121 )

(12c)

Solution (12a)-(12c) is identical to that calculated by
Herrmann, Hill, and Kaplan utilizing a hypothetical
equation of motion. The unknown parameter q used by
Herrrnann, Hill, and Kaplan characterizing the local
cubic nonlinearity is therefore identified in this paper as
q =4m/9. We must emphasize here that solution
(12a)-(12c) may represent the real solution only when
the delay time r is small such that g((1. The local solu-
tion (12a)-(12c) characterizes a gain which increases
exponentially with the delay time. It is the nonlocality g
which must be introduced in the equation of motion in
order to bring the gain back to zero at large values of r.

Let us now calculate the gain for realistic echo condi-
tions. Equations (I la)-(I lc) can be solved numerically
using the fourth-order Runge-Kutta method. For 100
steps this method provides solutions with errors less than
one part in ten thousand as corresponding solutions are
compared with their analytic counterparts, Eqs.
(12a)-(12c). Figure I shows a typical gain characteris-
tic admitted by Eqs. (I la)-(llc), where we have used

8—:AG z, g—=Gr/p, I =(4tt/9)A

Under lossless (v=O) and local (g=0) approximations
Eqs. (I la)-(I lc) can be solved analytically via Laplace
transformation as

I ~2 —2vtt

p) =i' 8—
I —ig(t + I )

G~2 2vT

(I ll )
1 —igt

100

where

IWe '" GWe '"
~ (11)

I —ig(t —I ) I —igt

10

W(t) =—Ie(t) Iexp(vt),

yi (t) —= Ivi (t)exp(iAG'rt '),
y2(t) —= y2(t)exp(iAG'zt '),

0.1

0.01
0.1

I

10
I

100
I

1000
satisfying the initial values

W(0) = I, pi(0) = I, $2(0) =0.
Pulse Delay Tibiae (naec)

FIG. 1. Echo gain vs delay time.
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FIG. 2. Plot of W(1) as a function of z.

the following parameters:

yHac =1 GHz, 4aM, =1750 Oe,

&=4.13x10 "cm, X =5.4x10 sec

a =b =1 mm, G =1000 0e/cm, An=16. 8 Oe.

The cw power supplied by the pump signal is calculated
to be 1.1 %' assuming the carrier frequency of 1 GHz
and an active sample region of volume 100 mm . We
must emphasize here that Fig. 1 resembles exactly the
experimental curves in Ref. 2 in both magnitude and
qualitative behavior with respect to ~. Figure 2 shows a
plot of W(I) as a function of delay time z. When multi-
plied by exp( —vz), Fig. 2 represents the amplitude of
the magnetic moment excited by the pump pulse at the
instant that the echo signal occurs. Under local and loss-
less approximations W(1) assumes the constant value of
unity as indicated by Eq. (12a). It is the nonlocality g
that reduces W(l ) to zero at large z values. '

We summarize this paper by the following. Based
upon the order of approximation of previous work we
have added extra terms in the equation of motion to ac-
count for magnetic relaxation and long-range dipole-
dipole interaction effects on the excitation of echoes.

These eA'ects were purposely introduced by us to deter-
mine the reduction of the rf-magnetic-moment amplitude
for times greater than the excitation pulse width. The
effect of the long-range dipole-dipole interaction is to
reduce the internal rf magnetic field to zero and hence
the rf magnetic moment. This means that although the
rf magnetic moments are in phase upon the application
of the excitation pulse the dipole-dipole interaction will
tend to uncorrelate the rf moments and eventually
reduce the moment to zero after sufficient elapsed time.
Hence, the moment reduces to zero even if the relaxation
time is infinite. Of course, with finite relaxation times as
we have assumed in our calculation it can only increase
the rate of rf-magnetic-moment reduction as shown in
Fig. 2. Once the moment is reduced to zero, the gain
will be small. Our calculations demonstrate this effect;
see Figs. 1 and 2.
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