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Guiding-Center Soliton
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We consider the behavior of solitons described by the nonlinear Schrodinger equation with periodic
perturbation (not necessarily small) whose period Zo is much shorter than the characteristic period of
the solitons, Zo. The soliton behaves like the guiding-center motion of a charged particle in a magnetic
field, smooth and adiabatic. However, when Z, approaches Zo, resonances appear between the periodic
perturbations and the characteristic frequencies of the solitons which induce the generation of dispersive
waves and/or the splitting of solitons.
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where

q(Z, T) =a(Z)u(Z, T), with =f(Z)a.
dz

Here Z is the distance of propagation normalized to the
dispersion distance, f(Z) is a periodic function in Z with
the period Z, much smaller than the dispersion distance
(=1).

In this Letter, we show that, based on the Lie transfor-
mation and the averaging method, the nonlinear
Schrodinger solitons are remarkably robust in spite of
such rapid perturbations with a relatively large ampli-
tude.

One important example is the propagation of optical
solitons in a dielectric fiber in which the solitons are
periodically amplified to the initial amplitude, where

f(Z) is given by '

N

f(Z)q = —I q+ (e ' —1) g 6(Z —nZ, )q(nZ, —0, T) .
n=l

(4)

Here I is the exponential loss rate per dispersion dis-
rz.tance of the fiber in the Z direction and e —1 is the

gain of the amplifier placed at Z=nZ, to compensate
for the fiber loss between two amplifiers. If I «1, soli-
tons are known to behave adiabatically with a slow varia-
tion in their parameters. The case we consider (Z, ((1)
has a rapidly varying perturbation, which allows I »1,
where the adiabatic perturbation theory based on the
smoothness of the perturbation is not applicable.

The situation is analogous to the motion of a charged
particle in a slowly varying electromagnetic field where

PACS numbers: 41.70.+t, 02.90.+p, 42.30.Di, 42.65.3x

We consider the behavior of solitons described by the
nonlinear Schrodinger equation with periodic perturba-
tion,

Bq . 1 Bq
Bz 2 QT

q =i q+—i ~q~'q+f(z)q,

or equivalently by

the exact position oscillates rapidly due to the Larmor
motion, yet the center of the Larmor motion (the guiding
center) moves smoothly on a distance scale much larger
than the Larmor radius. Consequently, we solve the be-
havior of q in Eq. (1) by transforming u to a guiding-
center variable v which is integrable to O(Z, ) by means
of the Lie transformation and averaging. The quantity v

satisfies the nonlinear Schrodinger equation to O(Z, )
except for a case where resonance occurs between the
periodicity of v(Z, . ) and of f(Z).

The first part of the Letter describes the derivation of
the transformed equation for v(Z, T) for the case of
nonresonance (Z, «1), and the second part, the eA'ects
of the resonance on soliton propagation when Z, ap-
proaches unity.

By analogy to the derivation of the guiding-center
motion, we introduce the Lie transformation which is
extended to a variable with an infinite degree of free-
dom, "
u =e '

v =V+&(v, v*,Z)+ z (p. VP)(v, v*,z)+
(5)

where P = (P, P*) and the directional derivative p V is
defined as

V=+ Q„T~ +p„T
8

n =0 VnT 8V~I'

with P„T='d "p/BT" and v„r =8"v/BT". The transformed
quantity U is expressed in terms of a variable of infinite
dimension (v, v, vT, vT, v2T, v 2T, . . . ).

The evolution equation of u, Eq. (2), is expressed in
the form

=A'(u, u*;Z) =A'o(u, u *)+A (Z)Xo(u, u*),

with

~ 2

Xo(u, u ) =— +iAo~u( u, Ao(u, u*) =i~u( u.
2 8T2

Here, Ao=(a (Z)) is the average of a (Z) over one
period Z„A(Z) =a (Z) —Ao is a periodic function
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with periodicity Z, whose average is zero, and

8 dv
6Z dZ (s)

in the form

dv = Yo(v, v*) =Xo(v, v*)+ Yoi(v, v )+ ', (9)

where Yo„(v,v*) =O(Z,") is obtained successively by
The averaged nonlinear Schrodinger equation is obtained means of the Lie transformation, Eq. (5).

Inserting Eq. (5) into Eq. (7), we have

dZ dZ dZ 9Z
+ V(y+ —,

' y. Vy+ )+ (y+ —,
' y. Vy+ )

=X(e"v,e "v*;Z)=e "X(v,v*;Z) .

We now expand p in the form

0 =Pi+42+

where p„ is shown to be of O(Z,"). In this expansion we
note that 8&„/BZ =0 (Z," ' ) but d v/dZ =0(1 ), provid-
ed that there exists no resonance between the soliton
solution of v and the periodic perturbation given by
f(Z). We will discuss the effects of this resonance later.
We obtain the following equations for each order in the
expansion of (10).

For order Z, =1, we have

I& i (Z) I
~ 2&oZa .

From O(Z, ), we have

(is)

[Xp,Xp] = —(2vlvTI +v*v +v vTT) . (17)

Bgq =A
i Kp, Xpl —Ypi, (16)

where [Xp,Xp] =Xo VXp Xo VXp is the Lie bracket
which becomes

y, (v, ~ *,Z) =A ~(Z)X o(v, v*),
where A ~ (Z) is the solution of

dA) =A with (A )) =0,
dz

(i2)

(is)

In Eq. (16), since (A~) =0, Yp~ =0 (the nonsecular
condition). Then the solution of Eq. (16) is given by

Pp(v, v*,Z) =Ay(Z) [Xp,Xp],
where Aq(Z) is the solution of

which is the nonsecular condition for the expansion (11).
The solution A ~ is given by

dA2

dZ
=A) with (Ap) =0. (i9)

~Z !Z
A i (Z) = A (Z') dZ' — A(Z') dZ'), From Eq. (15), we see that Az =O(Z, ).

Going to O(Z, ) in a similar manner, we obtain the
average nonlinear Schrodinger equation up to O(Z, ),

2

=i —+ iA—p I
v

I
v + ~ (AAI p) [Xp, !Xp,Xp] ] +0 (Z, ),
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while

a =v+ i& i I
v I"—

2 & (I» I'~ »(-"»
I
»I'+ v *—vT+"»T*T)+«Z.') . (21)

We note that Ao can be made equal to unity by a proper
choice of the integral constant a(Z) or by a proper scal-
ing. Thus, the transformed variable v satisfies the canon-
ical nonlinear Schrodinger equation to O(Z, ), and hence
the guiding-center soliton solution described by Eq. (20)
is valid to a distance O(Z, ). This fact was verified by
numerical simulation of Eq. (1) with f(Z) given by Eq.
(4).'

We now discuss the eAect of resonances. When Z,
approaches Zo, the nth harmonic of the periodicity Z„
2xn/Z„can have resonances with characteristic non-
linear oscillations of the guiding-center soliton solutions
of Eq. (20) and the adiabaticity is expected to be broken.
Here we numerically consider two types of such reso-
nances. One is the resonance of the one-soliton solution
and the other is that of the two-soliton solution.

The one-soliton resonance condition is given by

rl'/2 =2zn/Z. , n =1,2, . . . , (22)

where g is the soliton amplitude and Zp=4zr/rl is the
one-soliton oscillation period. We studied the effect of
the n=-1 resonance by solving Eq. (1) with Eq. (4) for
the choice of Z, =0.5, I =0.23, and a(Z) =ape
with ao = (2&'Z, /(I —e ')] ' =1.06, for which
=1 and !2~!~9.6X10 . A small I is chosen here to
reduce the width of the resonance. The resonant soliton
amplitude is given by @=5.01. Figure 1 shows the be-
havior of Iq(T)l at Z=0, 2, 4, . . . , 12 with the initial
condition q(O, T) =apgsechgT.

Note that dispersive waves are emitted periodically
until the pulse amplitude decays to approximately 4. We
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FIG. l. EA'ect of one-soliton resonance Iq(T)l plotted at
distance Z. At each distance of Z=0, 2, . . . , 12, Iq(T)l is

shown for —25 ~ T ~ 25. Dispersive waves are periodically
emitted away from the soliton until the amplitude is reduced to
the stable range.

FIG. 2. Stable (crosses) and unstable (circles) regions in
the initial amplitudes gl and g2 space for two bound solitons.
Instability is identified by the separation into two solitons with
identical amplitudes =(n~+ n2)/2. Open and closed circles are
slow and abrupt separations, while triangles are the case of no
clear sign.ran similar calculations for various values of the initial

amplitudes and found that if @~5.5 or q ~4, the emis-
sion of the dispersive waves diminished. We conclude
that the one-soliton resonance enhances emissio
dispersive waves until the soliton amplitude reach
level which is outside of the resonance width determ
by Z, and I.

The resonance condition for two bound solitons

g~ and g2 is given by

—,
' (n( —np)m =(2z/Z, )n, m, n =1,2, . . . ,

n of where Zo in this case is 4rr/(n~ —nq), the two-soliton
es a period. For a given value of Z, (=0.5), the resonant
ined condition is given by a set of curves in the g~-g2 plane for

each n/m ratio.
with A large number of numerical calculations of Eq. (1)

with Eq. (4) were performed for various sets of initial ei-
genvalues g~ and g2 for the initial value of q given by the
bound-two-soliton shape,

2ap g] g2 i 82
q(O, T) = (n~coshnqTe '+n2coshn~Te '),

g)+ @2

II' ' 2

cosh(ni+'n2) T+c so(hi nl7p)T+ —
2

cos(|7i 02) .gl g2 4g)g2

g)+@2 (n, +n, )'

(24)

In the absence of the perturbation, the phase 0; evolves

according to

l; Z+0;p. (25)

It was found that the initially bound solitons given by
Eq. (24) separated under resonant conditions and two
solitons with identical amplitudes (as is expected from
the conservation law) emerged. This indicates that the
two-soliton resonances excited by the periodic perturba-
tion induce merging of the eigenvalues g~ and g2.

Figure 2 gives the results of the numerical calculations
(Z 5 20) where cases of abrupt separation (solid circles),
slow separation (open circles), and no separation
(crosses) are shown in the plane of initial values of n~

and g2. Triangles are the cases which are not clearly dis-
cernible. An abrupt separation is identified as one which
took place within a distance of Z & 10, while slow sepa-

rations are those of Z~10. The curves show resonance
lines of Eq. (23) for n/m =1/4, etc. , as indicated. There
exists an infinite set of n and m combinations which

satisfy the resonances, but only lower integer values are
shown. The solid curve shows the demarcation line be-
tween the unstable (separation) and stable (nonsepara-
tion) regions. There are indications of resonant effects in

that the demarcation line parallels the resonant curves.
We note from Eq. (2) that Iul is conserved; thus if

we ignore radiation,

I (

= —,
' „ I

u
I

'd T = n, + n~ =cons~,

while the quantity which is conserved for the unper-
turbed case,

I2= l „(lul' —IuTI')dT=n'i+n~
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is not conserved. Hence in order for a resonance to
break a soliton, it may require a process which leads to a
reduction of Iq such that tI~ =rlq =I~/2=tI is achieved.
This process will be discussed in a future publication.

Figure 3 shows the behavior ~q(T) ~
at Z =0,2, 4,

. . . , 20 of two bound solitons for the initial amplitudes of
(a) (rj~ =3.2, tlat =1.8), (b) (rl~ =3.3, riq =1.7), and (c)
(tI~ =3.5, tI&=1.5) all lying on tI~+rlq=5. Note that
case (b) produces abrupt separation, while case (c) is
stable and case (a) is marginally stable. Note also that
both stable (nonseparation) and unstable (separation)
points exist on the line g~+gg=5. This indicates that
there exists no direct dynamical connection of phase
space along the line of I~ =const. For example, the in-
stability of case (b) (rl~ =3.3, tip =1.7), which has rapid-
ly changed the eigenvalues g& and gz to 2.5, did not take
place by moving through the stable point near g~ =3.2
and gz = 1.8, an indication of Arnold-type diftusion.
This is a consequence of the fact that the system has
infinite degrees of freedom.

In conclusion, by means of the Lie transformation and
successive averaging we have shown that the soliton (the
guiding-center soliton) described by the nonlinear
Schrodinger equation with rapidly varying perturbations
is quite robust even if the period of the perturbation is
much shorter than the characteristic period of a soliton
solution of the unperturbed equation. When a resonance
occurs between these periods, the guiding-center soliton
may split into two (or more) solitons or emit continuous
waves. The result is immediately applicable to the long-
distance propagation of optical solitons which are repeat-
edly amplified. Furthermore, the present method of Lie
transform and averaging may be used to show the robust
properties of other soliton systems in the presence of rap-
idly varying periodic perturbations.
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FIG. 3. Variation of bound-two-soliton magnitude ~q(T) ~
at

distances Z =0,2, . . . , 20 with initial eigenvalues gl and g~ be-
ing (a) (3.2, 1.8), (b) (3.3, 1.7), and (c) (3.5, 1.5). Note the
abrupt splitting into two solitons in (b) while there is stable
propagation in (c) and marginally stable propagation in (a).
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