
VOLUME 66, NUMBER 12 PHYSICAL REVIEW LETTERS 25 MARcH 1991

Spatial Dark-Soliton Stripes and Grids in Self-Defocusing Materials
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Spatial dark-soliton (SDS) stripes are experimentally found in the transverse plane of a laser beam
that passes through a rectilinear diff'raction screen before propagating in a self-defocusing nonlinear ma-
terial. Materials with diff'erent mechanisms of nonlinearity manifest the same qualitative results. The
SDS nature of the observed phenomenon is verified by numerical simulations of the (2+1)-D nonlinear
Schrodinger equation, analytical solutions for the (1+1)-D case, and their comparison with experimen-
tal data.

PACS numbers: 42.30.—d, 42. 10.Qj, 42.50.Qg, 42.65.Jx

Dark solitons' have provoked much interest since
they were first shown to be particular solutions of the
two-dimensional (1+1)-D nonlinear Schrodinger equa-
tion (NSE) with a negative (self-defocusing-type) non-
linear coefficient n2 [see Eq. (1) below]. As opposed to a
so-called "bright" NSE soliton, which propagates as a
stationary wave packet of finite extent in a (1+1)-D
nonlinear medium with n 2 & 0, a "dark" soliton is
characterized as a stationary "hole" on an otherwise uni-
form plane wave —it exists on a background field as an
absence of energy in a localized region, with constant
size and shape parameters, and remarkable stability. So
far, only (1+1)-D temporal dark solitons (i.e., intensity
minimums propagating along a nonlinear fiber on a
quasi-cw bright background) have been observed experi-
mentally. Here we report the first observations (see
also Ref. 10) of stable spatial structures (e.g. , stripes,
crosses, and grids) in the transverse cross section of a cw
optical beam propagating in a material with a self-
defocusing nonlinearity, with these structures having a
strongly pronounced soliton nature —namely, that of
spatial dark solitons (SDS's). Although no (2+1)-D
analytical solution for dark solitons in the NSE is known
to date, our experimental and numerical data with vari-
ous 2D amplitude and phase masks provide strong evi-
dence that the phenomenon observed by us is indeed due
to spatial dark solitons. Furthermore, our results here on
quasi-(1+1)-D propagation (see also Ref. 11) have
shown excellent agreement with the well-known analyti-
cal results for (1+1)-D dark solitons. '

SDS's constitute a fundamental phenomenon, which,
in the (1+1)-D case, is mathematically isomorphous to
temporal dark solitons in the same way as, for example,
(1+1)-D self-trapped channels in a self-focusing materi-
al are isomorphous to temporal bright solitons in fibers—in both cases the related phenomena are described by
the normalized NSE. In comparison to temporal soli-
tons, however, SDS's are easy to create and observe ex-
perimentally, requiring as little as a HeNe laser and
some slightly absorbing Auid. Various applications of
SDS's can be envisioned, such as optical encoding, limit-
ing, switching and computing, and nonlinear filtering.

Our exploration into SDS formation was motivated by
the observation of intriguing nonlinear transformations
of far-field (Fraunhofer) diffraction patterns of a wire
mesh placed at the input face of a sodium-vapor cell [see
Fig. 1 and Fig. 2(a), column ll. (Far-field diffraction is

highly sensitive to intensity-dependent phase changes in
a nonlinear layer. ' ) In all the cases studied so far with
rectilinear diA'raction screens, the linear Fraunhofer
diA'raction pattern evolves into various arrays of square
spots as the laser intensity increases. Subsequent mea-
surements at the output face of the nonlinear medium
(in the Fresnel or near-field regime) revealed the forma-
tion of very distinct dark stripes which had caused those
novel nonlinear far-field patterns.

In our initial experiment' a cw frequency-stabilized
dye laser beam of power I';„—100 mW (Fig. 1) was
passed through a wire mesh and then imaged with a
100-mm focal-length lens into an L=18-mm-long cell
containing —10' atoms/cm of sodium vapor, which is
known to be a strongly nonlinear material (see, e.g., Ref.
13). The laser frequency was tuned slightly below the
D2 atomic resonance, corresponding to a negative non-
linearity (n2&0). By using the self-deflection effect, '

the strongest resonantly enhanced negative nonlinear
coefficient n2 was measured to be = —3X10 cm /
W. ' The square mesh apertures had a size of xtt =160
pm and wires of diameter x~ =160 pm. The Gaussian
beam, with a radial (e ) beam size of wo-220 pm,
was dissected into a —3X3 array of spots (see Fig. 2,
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FIG. 1. A laser beam is incident on a wire mesh at the input
face of a self-defocusing medium. Cross-sectional images are
recorded in the near-field and far-field planes.
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FIG. 2. Far-field cross-sectional images for propagation
through sodium vapor with a wire mesh in the incident plane
(column 1) and through an absorbing liquid with the "cross"
configuration (column 2).

column 1). Far-field intensity profiles were recorded at a
distance of & 1 m. The spectacular transformations of
the far-field patterns described above were observed
when the laser was scanned from an off-resonance fre-
quency, below the D2 transition frequency, toward the
resonance (thereby varying the value of n2). Fraunhofer
diffraction was observed [see Fig. 2(a), column ll far off
resonance, where n2=0. However, as the laser frequen-
cy approached the D2 line (from below), the far-field
profile transformed itself into an amazingly well-

organized square array of spots, filling the central area
of the beam, Fig. 2(b), column 1. (At the self-focusing
side of the D2 line, where n2 & 0, the transformation was
considerably different from that described above and
consistent with the earlier results for self-focusing ma-
terials. ' )

The geometric beauty of the far-field patterns and
their stability over a relatively large range of intensities
and driving-field frequencies led us to believe that this
phenomenon is not attributed to the specific physics of
the nonlinearity in sodium vapor, but rather to the sim-
ple fact that the nonlinear component of the refractive
index is negative, i.e., n2 & 0. To verify this, we tried an
experiment using another phenomenon resulting in large
values of n 2 & 0: the so-called thermal nonlinearity,
which can readily be induced using low-power radiation

in inany slightly absorptive liquids. The results of these
experiments showed nonlinear far-field patterns amaz-
ingly similar to each other and to those of the sodium-
vapor experiment. Although the nonlinearity due to the
thermal effect exhibits some spatial nonlocality, this has
not appreciably affected the observed phenomenon,
presumably because the characteristic scale of the nonlo-
cality was smaller than the soliton size.

The simplest and probably most fundamental wire
mesh configuration is a single opaque "cross" (see Fig. 2,
column 2). In this case the Fraunhofer pattern [Fig.
2(a), column 2] experiences a nonlinear transformation
into a grid pattern [Fig. 2(b), column 2] that has essen-
tially the same characteristics as the 3 x 3 mesh case (ex-
cept that there are fewer spots), indicating similar non-
linear transformations in both cases.

To understand the observed phenomenon, we modeled
the experiment using the (2+1)-D NSE for laser beam
propagation in a nonlinear medium:

2ik rlE/Bz+V E+k n2)E) E/no=0,

where V =8 /8x +8 /8y [=8 /Bx for the (1+1)-D
NSE], x and y are the transverse coordinates, z is the
propagation coordinate, E is the complex electric field,
and k is the wave vector in the material. Equation (1)
was solved by us using numerical methods. ' The simu-
lated far-field results [see Fig. 2(c)] show the same
features as the experimental far-field patterns in Fig.
2(b). The agreement between the experimental and nu-

merical results is remarkable.
To identify the physical phenomenon which gave rise

to the observed far-field patterns, we studied the specific
features of wave propagation inside the nonlinear ma-
terial. This was accomplished by examining the near-
field patterns at the output face of the nonlinear material
for different lengths of the material, and for various
boundary conditions, including a single wire, two parallel
wires, two orthogonal sets of parallel wires, a wire mesh,
a single phase jump, multiple phase jumps intersecting at
a point, and two parallel phase jumps. ' The formation
of pronounced dark stripes or grids was a universal
phenomenon for all the cases studied. In general, the
width of each stripe remained almost constant as the
thickness of the nonlinear material increased, but de-
creased as the laser field strength increased. The num-
ber of these dark stripes, which tend to appear in pairs,
also remained constant with propagation distance, even
after collisions. These observations, together with the
fact that n2 & 0, suggest that the dark stripes are spatial
dark solitons. Our investigation also shows that, not-
withstanding orthogonal interactions, (2+ 1)-D dark-
soliton stripes behave amazingly similar to the analytical
(1+1)-D dark solitons;' i.e., it appears that soliton
stripes orthogonal to each other in a cross-sectional plane
propagate almost independently of each other.

To verify that the observed phenomenon was indeed
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the formation of spatial dark-soliton stripes and grids.
This eA'ect occurs, in general, because some spatial-
frequency components of the incident beam are chan-
neled into the formation of solitons, and thus are not al-
lowed to "radiate" away from the optical axis as in the
linear case.

In conclusion, we have observed the nonlinear trans-
formation of various Fresnel and Fraunhofer diA'raction
patterns of a laser beam passing through a rectilinear
amplitude or phase mask, followed by a self-defocusing
material. Under nonlinear propagation, spatial dark sol-
itons formed appearing as dark stripes or grids in the
beam cross section. The (2+I)-D soliton structures
behaved as if they consisted of two almost independent
and noninteracting (I+ I)-D soliton substructures. The
similarity between our experimental data and numerical
solutions of the (2+ I )-D NSE was remarkable.
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