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Can One "Hear" the Thermodynamics of a (Rough) Colloid?
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We calculate the effects of surface singularities, e.g. , wedges, on the thermodynamics of electric dou-
ble layers near a rough colloid or charged membrane. Each wedge yields an additive contribution to the
free energy 7 that is a function of the angle. With a probabilistic Brownian representation of 7, we give
a geometrical analysis of 9 entirely similar to that of vibration eigenmodes given by Kac in "Can one
hear the shape of a drum?. " Our analysis yields a universal scaling law for the free energy of a fracta!
colloid with its Minkowski dimension. The case of a colloidal random walk is derived from conformal
in variance.

PACS numbers: 05.20.—y, 02.50.+s, 82.65.Dp, 82.70.Dd

The thermodynamics of colloidal particles is especial-
ly interesting as the meeting point of electromagnetism
and statistical mechanics. Uncharged objects interact by
van der Waals forces, and by Casimir effect or disper-
sion forces at larger distance, due to thermal or quan-
tum fluctuations of the electromagnetic vacuum. When
charged (or held at fixed potentials), surfaces floating in

an electrolyte' interact via the screened Coulomb po-
tential, which may be coupled by specific boundary con-
ditions to position or shape fluctuations, as in polyelec-
trolytes, colloidal crystals, or bilayer fluid membranes.

Surprisingly, most studies have considered only highly
idealized and symmetric shapes for the colloids' or
near-planar interfaces, even for the linearized Debye-
Hiickel (DH) theory, ' ' which is valid for su%ciently
low surface potentials or charges' and characterized mi-
croscopically by a single parameter, the screening length
kpH —

7C

—
1

Progress has been made recently, ' for surfaces of ar-
bitrary shapes or topology, when "multiple-scattering"
techniques, originally devised for studying the distribu-
tion of modes in cavities, ' or the Casimir efrect of arbi-
trary shaped conductors, " were applied successfully to
the DH theory of colloids. The free energy P of charged
smooth surfaces was calculated formally, as well as the
surface tension and smooth-curvature expansion of P.

However, the above results do not apply when the sur-
faces become rough and develop singularities, like
ivedges or wrinkles, a situation which we address here,
and which may be experimentally important for the rip
pie phase of fluid membranes. ' For a completely rough
colloid, i.e., with a fractal boundary, we also expect a
new universal scaling behavior of the free energy P(x) in

terms of the "fractal dimension" of the surface.
For this, connections between the DH theory of col-

loids and that of wave or field equations in arbitrary
geometries will be brought to light in this Letter. Eigen-
mode problems' have been shown long ago to have a
nice probabilistic interpretation in terms of dift'usion of
random walks (RW), as in Kac's ' study of the vibra-
tions of a drum. Similarly, we describe here the double-
layer free energy 9 in terms of (abstract) Brownian
dift'usion near its surface. 8 edge contributions to 9 ap-

fD = —tc J dS, dSp (ap, x)
a'GD

p an. anp

or, from (1),
aGD

fp =„dS, d r (ttr, x),
an,

while for the Neumann case,

(2a)

(2b)

fv =g dS dSpGtv (aP, x) . (3)

Wedge. —Consider a two-dimensional (2D) infinite
wedge of apex angle y, wetted inside by an electrolyte.
The Green's functions can be calculated exactly as a

pear as analogous to corner problems in vibrating mem-
branes. ' ' Moreover, the exact scaling behavior of P
for a fractal colloid is obtained from the RW representa-
tion, in harmony with some recent rigorous results' '
on the eigenmode distribution of a "fractal drum. " The
method also allows us to use conformal invariance in two
dimensions, as made explicit here for a collodial RW.

We consider two physical cases: (i) conducting col-
loidal surfaces S, held at fixed potential p~s =go, the
Dirichlet (D) problem; (ii) insulating "opaque" boun-
daries with fixed surface charge density ao, the Neu-
mann (N) problem. A main tool is the Green's function
satisfying in the bulk electrolyte the source equation

(a —x2)G(rr', x) = b(r r'),— —

and specific D or N boundary conditions (BC) for a
point r' a approaching the surface S from the bulk
volume V, respectively, GD(ar, x)~~=0 and aG&/
an, (ar, x) ~g =0, where a/an, =n, V, is—the normal
derivative, n, being the (inward) normal at point a. No-
tice that interior and exterior problems decouple. To be
definite, we consider hereafter the interior problem, i.e.,
a vesicle filled by an electrolyte. All results extend to the
exterior problem.

The total electrostatic free energy reads P =Af, where
the amplitudes are respectively AD = —epox /8tt, Atv
=2trcro/e, with e the electrolyte dielectric constant, and
where the reduced "free energies" f are expressed in
terms of the Green's functions. For the Dirichlet prob-
lem
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rather intricate Kantorovich-Lebedev transform

G(z, z';x) =n. ', dxK;„((cp)K;„((rp')g(0, 9';x),

where sinhex, sin h (z —y) x
gD(jv)(0 8'x) =cosh(tr —le —e'l)x+eD(w) . cosh(y —8 —0')x+ . cosh(8 —0')x,

sinhyx sinh yx

&D l~ 1V +l ~

in which, in complex notation, z =pe', 0 ~ 0 ~ y, and K
is the usual modified Bessel function. By using integral
properties of the latter, Eq. (1) can be checked directly,
as well as D or N BC, depending on et)(~). The form (4)
is well suited to the computation of (2a) and (3). For
the Dirichlet problem, we first integrate over p, p' and
take into account all pairs of normal derivatives on both
sides of the wedge. The resulting x integral is diverging,
however, due to the infinite wedge. We subtract its value
for a ffat wedge (y=x) as a reference point. After a
careful calculation, we obtain

6f~(o) (y) =fwedge I.' = —(4/)r') ID (y) ~

where I has the simple integral representation

(5)

Io(y) = I dx I—
tanhex

I I I I I I ( I ( I I ( ( I

y/7T

FIG. 1. Wedge contribution lv, Eq. (6). For y/@~2, the
values give I~(y'=x /y).

Notice that ID does not depend on x anymore. Indeed,
in two dimensions V ——rc f is dimensionless and, since
a wedge is scale invariant, a 6f„must be a function of y
only. A similar calculation for the (subtracted) Neu-
mann free energy (3) leads to

af. ( )(y) = (4/~')I&(y—),
where I~(y) =fo dx [I —tanh(xx)/tanh(yx)]. Notice
the interesting duality between the N and D cases,
IJv(y) =(rr/y)Io(rr /y). The wedge universal function
ID is represented in Fig. 1. For sharp edges, y 0, it
diverges as ID(y) —(1/y)ln2. In both the D and N
cases, the thermodynamics of electric double layers tends
to open wedges. If the wedge is immersed in the same
electrolyte on both sides one has to sum 8P„(y)

+as„(2~—y).
Smooth rough -surfaces. —Consider now a colloidal

vesicle in three dimensions made of smooth ("analytic" )
patches, separated by sharp edges i, of angles y; and
apex lengths I;. In the strong-screening regime, x
contributions to the free energy become local and
decompose into those of smooth parts and wedges.
Hence the correct expansion of the reduced free energies
(2),(3) for a crumpled membrane is

f=x. ' dS 1+ H+ 2H—+ 2K+a b 2 c
~ smooth S K JC

+ g I.;bf„(y;),
wedges i

where the mean and Gauss curvatures are defined in
terms of the principal radii of curvature R i,R2 as
H= 2 (1/Ri+1/R2) and K=1/R(Rq. The triads a, b,
and c are universal dimensionless quantities, all associat-
ed only with the boundary conditions: (a, b, c)
=(—1, —1, —,

' ) (D) or (1, —', , ——,
' ) (N); Bf„ is (5) or

(7). In a real membrane, a ripple has a very small apex
curvature radius ro, and is seen as a wedge in the range
ro«XDH =a. '«Ri 2, where (5)-(8) apply, while it
looks smooth at still higher electrolyte concentrations
A, DH &ro. It is interesting to check that the linear curva-
ture term )r fdSaH, e.g. , in 2D, can also be reob-
tained by approximating a smooth surface by a polygon
with vanishing edges y;~ tr, and using (5) or (7). But
wedge contributions cannot be obtained from the
smooth-curvature expansion.

Random-chalk representation. —It is well known that
potential theory can be recast in terms of random walks.
We make this point clear now for colloids, in the con-
ducting and insulating cases simultaneously. Consider
the time-dependent "heat kernel" P(t) =e', with ab-
sorbing boundary conditions PDls =0, or reffecting BC
(8/Bn, )P& ls =0. It satisfies immediately' the Browni-
an diff'usion or heat equation (8t —4)P =0, with
P(0) =1. The "matrix element" Po(rr', t) is simply'
the probability density for a Brownian path to go from r
to r' in time t, without hitting the boundary. The Neu-
mann kernel P~ is that of a Brownian motion reflected
at each contact at the boundary. '

Now, the Laplace transform of P is fo dte " 'e'
=(—A+a ) ' as an inverse operator, and hence is ex-
actly the Green's function G solution of (1), with proper
BC. From this, we obtain immediately the free energies
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(2),(3) under the form

where in the Dirichlet case

Pp(t) = d—S. d'r Pp(ar, t)
n~

(10)

is the integrated probability that a random chalk
launched at t=0 anywhere inside the cavity hits the
boundary for the first time at t (Fig. 2); while in the
Neumann case

P(t) = t 't2+a„dSH — g 4L;I(y;)i-o jx wedges i

t ~/2

+ 2 dS(bH +cK)+J S (12)

where triads (a,b, c) and wedge contributions I depend
on D or N boundary conditions as given above. In the
opposite ("low salt" ) limit tr~ 0, some manipulations on
(9),(10) give a very simple form to f in a power series
of x; e.g. , in the fixed-potential case, fp (x )
=V+ -o(t )tc, where V is the (bounded) volume of
the electrolyte, and (t ) are moments of the first exit
time t, averaged over random paths and initial points. In
particular, f(0) = V; hence, Pp = —ego Vx /8n for

0. The probability formalism also gives a numerical
RW approach.

Mostly studied, in mathematics ' '"' or in quantum
chaos, is the trace Z(t)= Tre' =Jvd r—P(rr, t), i.e.,
the total probability of return of a (absorbed or
refiected) RW. The singular corner contribution similar

P~(t) —= dS, dSpPtv (aP, t)

is exactly the integrated probability that a reflected
Brownian motion diffuses in time t between two arbi
trary points of the boundary (Fig. 2).

As a first application, we Laplace invert by (9) the
tc ~ expansion (8) of the colloid free energy to get
new results on the short time expa-nsion of probabilities
ID(1V)-

&. (t) =
&/2

a
4zt

—a '2p 2/4te
pGZ

after use of the Poisson summation formula. The colloid
free energy (for the interior problem) is therefore the
Laplace transform (9) of (13). The t 0 expansion
of Plv is immediate: PN (t) = [2(a'+ b')/Jul t ' +8
+ . , up to exponentially small terms. This gives fz
=Lx '+8tc +, where L=2(a'+b') is the con-
tour length, in agreement with (8) (taken in 2D), with
zero curvature terms H=O, K=0 and four wedge con-
tributions (7) I~( —,

' n) = —
2 .

Fractal colloid. —The RW representation is particu-
larly useful for a colloid whose boundary is fractal. For
the conducting case, Pp (t) can be also viewed as the
probability for a RW to escape from the absorbing sur-
face. We expect the scaling law

P, (t)-~t """"", (14)

where d is the space dimension, and A and Dbt the frac-
tal Minkowski measure and dimension of the boundary
(not to be confused with the Hausdorff dimension DH).
It is defined by

V (e) ed PM

to (12) 'reads, ' in 2D, (ir —
y )/24tty, and can be reob-

tained from conformal invariance, ' suggesting a similar
approach to our wedge result (6). Note that the free en-
ergies (9)-(11)can be finally expressed in terms of the
eigenmodes b.„[ (the "vibrations of the drum") and of
the eigenfunctions p„of —d, (with D or N BC), since'
P=g, tp„p„e "'; so, one can "hear" the colloid free
energy, in the same way as its shape' through Z(t)i„t-

"Rectangular colloid. "—A nice check of the above
can be performed in 2D for a rectangular (colloid) box
[a'xb']. For, e.g. , the Neumann case, a calculation of
probability (11) from the eigenmode expansion yields
typical Jacobi 0 functions,

Ptv (t) =4—,8, (t)+4 , Ob'(t)—+8,
b' a'
a'

where

FIG. 2. D, random walks contributing to the first-hit proba-
bility (10) Po, N, reflected surface-to-surface RW building up
Pz (11) (for the interior electrolyte).

where Vd(e) is the Euclidean d-volume of the points at a
distance less than e from the surface. There can be two
difI'erent D~ depending on the side of the membrane.
For electric double layers near a rough surface, this "lay-
er dimension" is natural. In general, d —1 ~ DH
(DM ~d. There is no rigorous proof of (14). For
D~ =d —1, (14) coincides with the first term of (12).
For a D-dimensional crumpled Gaussian manifold em-
bedded in d-space, I find indeed an exponent
+O(e ), with e=2D/(2 D)+2 —d= DM+2 —d; —the—
O(e~), p) 2, corrections should all vanish. When the
fractal is itself a RW (Dbt=DH=2), (14) has been
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proven. The best argument can be found in a conjec-
ture by Berry for the fractal boundary term in the den-
sity of modes of a domain V, made (rigorously) correct
recently. ' ' In terms of the "drum" partition function
Z, it reads' (for the interior roblem) Z(t) —t
where Z(t)—:Z(t) —(4xt) " V is the difference from
the free-space Weyl result. ' Z(t) can be written as a
convolution' of probabilities for hitting the boundary at
least once and returning freely to the origin, and a scal-
ing argument gives (14). From (9) follows the (total)
free energy PD of a fractal colloid at potential pp,

cy 2RDu Du+ 2 —d
D p (15a)

where we used A —R for a linear size R. For a frac-
tal, no normals exist, but the Weumann problem can still
be defined in a natural way. Then the surface occupa-

(d DM )I2
tion probability scales as P&(t) —At, whence

cy g 2R
—Du d Du —2—

(15b)

'E. J. W. Verwey and J. Th. G. Overbeek, Theory of the

DM
in terms of the total charge Q =Aop —R ap.

Koch curve and random walk as fractal colloids—For the triadic closed Koch curve or snowAake, we
can see the emergence of (15) in 2D frotn (8). At the
pth generation of equilateral triangles (p =0 correspond-
ing to a single one of side R), the elementary length is

ap(p) =R3 for each of the N(p) =3x4 sides,
separated by tr/3 or 4x/3 angles. For this polygon we get
the asymptotic expansion (8),(5) x fD = (Rx ) h (xap),
with h (x) =x "—cx + for x~ ~, and
Dss—=DH =ln4/ln3, c = —', [I(tt/3)+2I(4n/3)] =0.4810.
This result is valid for xap(p) »1, i.e., a very small
Debye-Huckel screening length. When mao crosses over
to 1 (fractal regime), we expect h to become constant, in

agreement with (15a).
Consider finally a fractal colloid mode itself of a RW,

of fractal dimension DH =D~ =2, and length 1, with a
mean size R -S. The probability PD (14) is made up
of the bulk contribution -St, and an end
effect term ay~+"-t ~, where ap is a microscopic
cutoff length, and g the end exponent governing the
nonintersection probability of two RW starting at a
common origin. In 2D, we know from conformal invari-
ance, g= 8 . By Laplace transform (9), we find in 2D
the (quenched) free energy of a RW,

Po —Sx lnxap+constx (apx')

The first term is extensive, but in the Coulombic regime
0 the end eAects dominate, as expected, with a non-

trivial conformal exponent 4 .
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