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Observable Characteristics of Pure Quantum States
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A pure state of a quantum-mechanical system, like a completely polarized state of light, is specified by
the results of a few well-chosen experiments. We present a method for selecting such experiments, with
applications to low-j angular momentum states.

PACS numbers: 03.65.Fd

The standard notations identifying a quantum-me-
chanical pure state, such as lair) or &i Iy&, generally per-
tain to vectors in a Hilbert space rather than to observ-
able features of the state. Nevertheless, purity of a state
implies extensive interrelations among measurements
made on the state. In this Letter we outline the appear-
ance of a pure state in physical instead of Hilbert space.

If Iiir) represents a pure state as a vector in an N-
dimensional Hilbert space with orthonormal basis fli)j,
then ltir) is characterized by the coefFicients &ily) in the
expansion

Iii &
= Z It)&t le&.

«& —&yl Q le & =g&v lt&&(I Q IJ&&J I y & (2)

The operator 0 is a vector in the N -dimensional Liou-
ville representation, with basis fli)&jl), in which a state
is specified by its density matrix p. In general, p depends
on N independent measurements &Q'), or rather N —1

ignoring the trivial identity operator. A pure state is
grossly overdetermined by these N —1 measurements.
We wish to determine which 2(N —1) observables are
most appropriate for parametrizing Iy), as well as the

Since Iy) is normalized to unity, and since its overall
phase is physically irrelevant, the magnitudes and phases
of N —

1 ratios among the &ily) characterize Iy) by
2(N —1) real parameters. Observable properties of I y)
consist of the expectation values of Hermitian operators
0, namely,

observable consequences of the (N —1) —2(N —1)
dependency relations.

A step was recently taken in this direction for the
case of angular momentum eigenstates, where N=2j
+1. The essential feature in the analysis of Ref. 2 was
the relation

Tr(pz) =Tr(p) =1, (3)

rather than just the trace condition (3).
To do this, we introduce a set of N operators

N2 —IQ, Q', . . . , 0 ', which are orthonormal and com-
plete in the sense that

(5)

We set aside Q to be a multiple of the identity operator,
Q =I/JN. Expectation values &Q ) of these operators
are the expansion coefficients in

p =+Tr(pQ ~) Q &t =g &Q ~) Q ~t

which is a necessary and sufficient condition for the state
p to be pure. In this case p factors into the dyadic
p= I iir)&yl and the amplitudes &il t((r) are easily recovered
from the &Q ). While Ref. 2 found explicit formulas for
the &il y) using only 2(N —1) observables, the whole set
of N —1 was needed implicitly to verify the relation
(3). Here we will exploit the entire operator relation

(4)
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In this notation our key condition (4) reads

g(n )(n')n'np'=g(n')n"
aP

eigenstate of total angular momentum j. Then as our
base kets we take fl jm), —j~ m ~ jj, and as operators
the multipole operators Tg with matrices

Projecting now on any 0 ~ yields
&jm'lT(ljm&=( —I)~ &jm', j—mlKQ&, (io)

g(n ')(n»Tr(n 'n i"n ")=(n ')
aP

(9)

The left-hand side of (9) represents a reduction of the
direct product of the set of observables, which could be
carried out for any state, pure or mixed. The hallmark
of a pure state is that nothing new is generated by this
reduction. Equation (9) suggests that after a certain
"core" of essential observables has been measured, the
rest can be recovered. Notice also that if y=o, then
n =I/JW reduces (9) to the trace condition (3).

For illustration, we now specialize to the case of an

O~K~2j, —KsQ~K,
as in Eq. (4.2.5) of Ref. l. Although these operators are
not Hermitian, they have useful transformation proper-
ties; for observables, one may take the real and imagi-
nary parts of (Tg) with Q~0. Representing actual
measurements would require us to multiply the matrix
element in (10) by the appropriate reduced matrix ele-
ment, which depends only on E and carries the correct
units. Here, however, we are interested only in geome-
trical eA'ects. In this example To serves as 0, and

l

(To) =(2j+1) '~ fixes normalization.
Cast in these terms, Eq. (9) becomes

E)
&T~,'&(T~ &&K Q, , K,Q, lKQ&( —i)' '~(2K, + i) '"(2K,+ i)

K 1 &O, QI
K2&O, Q2

E2 K

j j, 1 — (Tg~&2j+1

whose left-hand side is the familiar recoupling of tensor
operators. Since no multipole with K&2j exists for
this state, no such multipole can be constructed on the
left-hand side of (11); this is the significance of the 6-j
symbol. (Terms proportional to (To)(T() have been
moved to the right-hand side, so that only nontrivial
products are reduced on the left. )

Parity plays a role in the analysis of (11). The sum-
mand is invariant under the exchange (Ki, Qi)

(K2, Qi), except for the Wigner coefficient, which

picks up a factor ( —1) ' ' . Thus, upon summing,

only terms with even values of K~+K2+K survive. This
parity-favoredness condition says that no axial tensor
constructed on the left-hand side of (11) contributes to
the polar tensor on the right. To take an example, the

set of (Tg) with K =1 is equivalent to the mean angular
momentum (J) of the system. Thus the combination
K~ =K2=K=1 refers to the vector component of the
direct product f(J;)(J~)J, i.e., to the vanishing vector

product (J)x(J). The parity-favored character of the
product in (11) implies that higher-rank analogs of the
vector product also vanish, while only higher-rank ana-
logs of the scalar product contribute.

Let us examine the meaning of (11) for a few small
values of j. For j= 2, there is little to say; the only ob-
servable is the mean angular momentum vector (J), pro-
portional to the magnetic dipole moment of the system.
For a pure state l(J) l

= —,', and the spherical angles (8,&)
identifying the direction of (J) completely identify the
state. Values of l(J) l

& —,
' identify mixed states, repre-

sented by incoherent superpositions of two pure states,

weighted by the factors —,
' (1+ 2l(J)l). 5

A pure state with j=l is identified by its dipole
(K = 1) and electric quadrupole (K =2) moments. We
simplify the analysis by laying the z axis along the direc-
tion of (J), thus forcing (T~ ~) =0 and (To) =l(J)l. Set-
ting K =Q =1 in (11), we see that only terms containing
the products (T2)&T' i), (Ti)(Tii), and (To&&TE& con-
tribute to the sum, but in the chosen reference frame,
only the second of these terms survives. Laying aside for
the moment the degenerate case (To) =0, this forces
(T~ ~) =0. This condition may be realized by confining
the quadrupole to the x-y plane, leading to the first ob-
servable characteristic: A pure state with j=1 has its
dipole moment orthogonal to a symmetry plane of the
quadrupole.

A second characteristic follows from (11) with K= I,
Q =0, which reduces simply to

(W2/J3)(TO2)(Toi) = —,
' (To'&. (12)

41&T22&l'+2(To)'= i

Equation (13) invites us to introduce a parameter X,

Thus, in this reference frame, (Tii) has the fixed value

I/J6, regardless of the pure state involved. This value of
(Tii) is consistent with ly) containing no m=O com-
ponent, i.e., with a quadrupole confined to the x-y plane.

Finally, using the above results, Eq. (11) with K=2,
Q =0 reduces to an expression connecting the dipole and
quadrupole moments:
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defined by

cos2A, =J2(TO), sin2X =2~(T2) ~, (i4)

tween multipoles of current with even and odd values of

which governs the relative strength of dipole and quadru-
pole excitations. The remaining equations, (11) with
%=2 and Q&0, either vanish or reproduce the results
above. Now the case (To ) =0, excluded above, is
achieved when k =x/4.

So far we have utilized only three parameters —two
spherical angles locating the z axis, plus k—whereas a
pure state with j=1 requires four. The final parameter
is the azimuthal angle between the semimajor axis of the
quadrupole and the x axis. Rotating the coordinate
frame to make this angle zero allows us to model the
quadrupole simply as a cross consisting of point charges:
four negative charges at the origin, and positive charges
at (~a,o, o) and (0, + b, 0). The lengths a and b are
not free parameters, being determined by

&T') =~2(a'+b') = I/~~

(To) = —(I/J5) ( —,
' —cos2p)cos2v,

(T03) = —(I/J5) (1+ —,
' cos2p)cos2v,

(T23) =(1/2 J2)sin2p cos2v,

x =(J5/4)sin2psin2vexp(ip/3),

(i7b)

(17c)

(i7d)

(17e)

y = (v 5/4 J2) (1+ cos2p )sin2 vexp( —i&/3), (17f)

(Ti) = —,
' (1 —cos2p)sin2vexp(ig/3) . (17g)

Notice that p governs the moduli of these multipoles, as
it must, since by parity considerations in (11), a current
must be constructed by the pairing of charge and current
multipoles.

As before, this parametrization also aAords an easy
representation in Hilbert space. Applying (16), we find,
in our coordinate frame,

along with (13) and the normalization (3).
The wave function (1) now follows easily from this

characterization of its observables. Reference 2 points
out that the expansion coefficients a = (jm ~ y) are re-
covered from

a@2 =sinp sin vexp(ip/6),

ali2 =cosp cosvexp( —ip/6),

a —
1 i2

=cosp sin v exp(ip/6),

a —3/2 sinp cosvexp( —ip/6)

(20a)

(2ob)

(20c)

(2od)
a*a =g(Tg)(KQ~ jm', j—m)( —1)J

KQ
(i6)

In the present case this yields a~ =cosA, , a0=0, a —
~

=sink. , reproducing an earlier result.
The case j =

2 also introduces the magnetic octupole
moment (@=3). Borrowing from our experience with

j =1, we choose the z axis orthogonal to the quadrupole
plane, and the x axis along an axis of the quadrupole.
This exhausts three of the six free parameters, and sets
(T~~)=Im(T+2)=0. We shall not go through the
algebra here, but merely report the results. The shape of
the quadrupole is determined by a parameter p,

(To) = —
2 cos2p, (T2) =(I/242)sin2p, (i7a)

reflecting the fact that the magnitude of the quadrupole,
gg~(Tg)~, has the jixed value —,'. The magnitudes of
charge and current multipoles are decoupled here, in
contrast to j=l, where one parameter splits the dif-
ference between them.

Two parameters are left with which to describe the
system of currents. One is the phase p in

&T3) =~&T3)~exp(iy/3),

where p represents an overall angle of rotation of the oc-
tupole about the z axis. To simplify further results, it is
convenient to define the following orthogonal combina-
tions of multipoles with Q = + 1:

x =(J6/2)(TE)+(Ti), y =(Ti) —(J6/2)(T& ) . (19)

Then the sixth parameter v mediates the diAerence be-

Two additional constructions should prove useful in
visualizing this parametrization in specific cases. One is
the Majorana representation in which a pure state of
spin j is modeled by a "star" consisting of the polariza-
tion vectors of 2j spin- & systems. The 2j sets of spheri-
cal angles (0;,p;) giving the directions of these vectors
correspond to the 4j parameters identifying the state,
and are determined by the roots of a certain polynomial
of degree 2j. In the present case one would remove
three parameters by laying the coordinate axes along the
principal axes of the star.

A second construction, due to Maxwell and Sylvester,
provides a means of visualizing the multipoles by collec-
tions of dipole fields. Specifically, the contribution from
the Q component of the 2 -pole field is represented by
K —Q dipoles pointing up along the z axis, along with Q
dipoles arranged symmetrically in the x-y plane; these
fields are then weighted by the amplitudes (Tg). Refer-
ence 8 then presents an algebraic procedure for replacing
the eAect of the entire 2 -pole field by a collection of
just EC dipoles, whose directions pick out significant axes
of the field. Both this procedure and the Majorana pro-
cedure appear analytically cumbersome in the generality
of this paper, and are presented for possible use in appli-
cations.

The problem remains of connecting these results to
specific experiments. Reference 6 presents an instrument
consisting of a quadrupole condenser and a dipole coil
sharing a common axis. Given the proper orientation
and the proper ratio of quadrupole to dipole fields (i.e.,
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the proper k), the device can select any pure state with

j=1 as one of its stationary states. The method in the
current work can be used, in principle, to design similar
experiments for higher j. Any pure state will then be
characterized by a type of generalized Stern-Gerlach ex-
periment in which only a properly oriented and balanced
combination of electric and magnetic fields will pass a
particular polarized beam with 100% transmission.
Beyond this lies the possibility of passing an unpolarized
beam through several such devices, to decompose the
corresponding mixed state into a weighted sum of pure
states. Such an experiment would constitute an empiri-
cal diagonalization of a general density matrix.
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