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Propagating Fronts near a Lifshitz Point

Dee and Saarloos' found in an extended Fisher-
Kolmogorov (EFK) equation the transition from a uni-
formly translating front to a pattern-generating envelope
front. A new e¥* scaling of the front velocity is de-
scribed and electrohydrodynamic convection (EHC) in
planar nematic liquid crystals is proposed as an appropri-
ate system for investigating some aspect of this front
type.

In EHC one expects for some nematic materials as a
function of the frequency o of the applied voltage a con-
tinuous transition form oblique to normal-oriented con-
vection rolls.2"® Near the transition frequency w, (Lif-
shitz point) the weakly nonlinear behavior is described
by the amplitude equation3-3
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e=(W?*—V2)/V? measures the distance from the nor-
mal-roll threshold V.. Numerical values for the relaxa-
tion time 7o and the coherence lengths &; and Z are given
elsewhere.>>% W is proportional to o — w,. For periodic
solutions 4 =FE expli (Qx + Py)], with
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the absolute threshold for oblique rolls is e, =—W?/
(4—2z%) at Q.=ZW/(4—Z»&, and PE=—2W/(4
—22)532 and €, =0 at Q. =P, =0 for normal rolls. The
stability of these solutions as well as zigzag and undulat-
ed solutions have been investigated.*> Equation (1) is
more general then the EFK equation in Ref. 1. It is an
equation for a complex field A4 instead of a real field and
includes two space dimensions.

For real y-dependent functions Eq. (1) reduces to the
EFK equation in Ref. 1, however, the scaling used there
is restricted to W >0 and e=1. Using the ansatz A4
=expli(Qx+¢)1B(y), with B a real function, then the
marginal-stability analysis, described, for example, in
Refs. 1 and 7, gives the velocity for fronts propagating in
the y direction (parallel to the convection rolls). For
U>+12¢ and U=W+ QZ the uniformly translating
fronts move with the velocity
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and for U < +/12¢ the envelope fronts move with velocity
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with F=(7U%+24¢)'?—3U. The wavelength of the

periodic patterns behind the front for U <+/12¢ is, ac-
cording to the arguments used in Refs. 1 and 7,
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This wavelength A diverges for U— +/12¢. For W <0
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and Q =Q, at €= ¢, however, P =2n/A reaches the crit-
ical wave number P, of the oblique periodic solution.
One could call U=+/12¢ the Lifshitz point for the tran-
sient periodic pattern the behind fronts, similar to W =0
for the stationary periodic pattern.

For U=0 the first nonvanishing derivative with
respect to y is of fourth order in Eq. (1) and then v,=$%
x(3)34e¥4¢,5/70. Very remarkable is the 3/ scaling,
which is different to the well-known front velocity v,
=2§1\/E/ 7o perpendicular to the convection rolls and to
va~(e—€.)'? for U0 and U <0 parallel to the rolls.
The measurement of this new e/* scaling seems more
easily feasible than the transient periodicity behind the
front. A possibility to detect this ¢ law is to measure the
growth velocities (vy,v, =v;) of nuclei of convection
rolls, as done in Ref. 8 apart from the Lifshitz point.
Another way is to investigate fronts in samples, where
the electrodes are narrow in the x direction but extended
in the y direction.

In addition, the measurement of the ¢ dependence of
the front velocity seems sometimes an appropriate tool
for the determination of the transition (bifurcation) type.
This was, e.g., tried in Ref. 9 where we found experimen-
tally for the front velocity roughly v ~¢%7, however, this
has perhaps a different reason than discussed here.

A short discussion with L. Kramer is gratefully ac-
knowledged.
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