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We examine equilibrium phase separation in a grafted polymer layer composed of mutually immisci-
ble chains. Under symmetric melt conditions, we predict that there is a transition to a "rippled"
phase —a density wave in composition running along the surface. This transition is expected for a
molecular weight 2.27 times that for the same species in a simple blend at its demixing threshold. The
ripple wavelength is 1.97 times the chain rms end-to-end distance. The lateral rippling is accompanied
by a composition oscillation with depth.

PACS numbers: 81.60.Jw, 36.20.—r, 82.70.—y, 87.15.—v

Polymers that have one end permanently attached, or
"grafted, " to a surface have unique properties. ' If the
molecular weight is high enough, then even for a small
number of grafts per unit area a the chains will be
strongly perturbed from their ideal random-walk confor-
mations by their excluded-volume interactions. In this
paper we consider the equilibrium statistical mechanics
of a grafted layer composed of incompatible molecules.
Phase separation is inevitable for long chains; the cen-
tral issue here is to determine the nature of phase sepa-
ration in the grafted layer. This phase separation is
strongly influenced by the mutual deformation of the po-
lymers; accordingly, we find a type of spatial modulation
not previously encountered in phase transitions.

We specialize to the case of a polymer melt where
demixing interactions are most relevant. The chains are
each presumed to displace a fixed volume V; this volume
is proportional to the degree of polymerization N. The
rms end-to-end distance of such a chain in a melt is RE
=(3V/a)'I, where the "packing length" a is typically
of order 10 A (the radius of gyration is Ro =R~/J6).
The layer height is determined by the total chain volume
per area of surface as h =Vcr If Vo.&)(V/a)'I, then
the chains are extended over a distance far greater than
the free radius of gyration. If this condition holds, but
still the layer height is much less than the maximum ex-
tension of the chains, then at distances less than RE we
can consider the conformations to be random walks,
while at longer distances, we can consider the conforma-
tion to be essentially one dimensional.

Consider a two-component layer constructed so that
the grafted ends are mixed at the grafting surface (for
simplicity, we consider the most symmetric case where
the two species, denoted A and 8, are identical in molec-
ular weight and other respects; the net monomer volume
fractions are thus f~ =ftt = —,

' ). This might be done us-

ing an ACB triblock where C is short and can be co-
valently bonded to the surface at temperatures well
above the AB demixing transition. We presume that this
leads to a situation where the interactions favoring AB
demixing are much smaller than the symmetric part of
the AB monomer interaction. If the grafted ends could
independently wander on the surface, there would be
conventional bulk phase separation at AV=2 (2Avp is

the free-energy reduction realized by moving a small
volume v of A chain from a region with a volume frac-
tion of p~ = —,

' to a region with tit~ =
2 +p). However, if

the ends are truly confined, this cannot occur: Any
phase separation must occur at shorter length scales.
The two short length scales are the layer height, which
characterizes the total distance that chains extend verti-
cally, and the free radius RE, which characterizes the
transverse size of conformational Auctuations.

If we consider phase separation on scales of the layer
height, we are led to think about a "layered" state, rich
in one component at the bottom of the layer, and rich in
the other at the top; this is achieved by separating the
free ends of the two species vertically. However, phase
separation at the much smaller scale of RE suggests a
quite different "rippled" state where the monomer densi-
ty is modulated along a direction in the plane of the lay-
er. The insets of Figs. 1 and 2 show typical conforma-
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FIG. l. Inset: The structure of the layered phase. Black

chains are near the grafting surface, while the white chains are
stretched so that their free ends are nearer the top of the
brush. The main figure shows the monomer density diAerence
p(z) vs height in units of the layer thickness.
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FIG. 2. Inset: The structure of the rippled phase. White
and black chains are alternately compressed together and

splayed apart along the x direction. A white-rich half wave-

length is between the two black tick marks. Along the y direc-
tion, out of the page, there is no variation of the structure.
Shown on the axes is the oscillating ripple profile p(z) vs the

height z in units of the layer thickness.
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tions of chains in these two types of states. One might
argue that the layered phase is preferred due to the
smaller amount of A-B interface required. However, we
must remember that the layered phase requires the
species that is near the surface to be submerged in the
tails of the other species. The remainder of this paper
addresses the question of which of these states represents
the phase-separated grafted layer.

Theory of the two component -brush. —Under the con-
ditions described above, we may consider a free energy
per chain that consists of a "stretch" energy (entropy is

lost when a chain is extended) and an effective field p(r)
due to interactions with surrounding chains:

2
V a drS[r(v)] = dv — +p(r(v))

2 dv

where r(v) is the position of the vth monomer. The "po-
tential" p(r) is the free-energy cost of placing a unit
volume of polymer at position r; in a melt, this is the
thermodynamic pressure. Chains that are grafted have
one end (v =0) constrained to be on the grafting surface
(z =0). By symmetry, the path which minimizes this
free energy must have the form r(v) =z(v)z, where z is
the unit vector perpendicular to the grafting surface.

This "classical" path satisfies the Euler-Lagrange
equation a d z/dv =dp/dz, with boundary conditions
z(0) =0 and z(V) =z |. There is an additional boundary
condition which reAects the fact that the end at z] is

free, and thus cannot support a stretch: dz/dv~„, =y =0.
These conditions determine the form of the pressure to
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be p(z) =P[1 —(z/h) ]+8(1/V), where P =rt acr /8
The trajectories are simply z(v) =zl sin(xu/2V). The
condition that the melt is incompressible determines the
number of free ends per unit height to be dcr/dz
= (crz/h ) (b —z &)

We now consider the fact that our layer is composed
of two species of incompatible molecules. Chemical
differences give rise to a mixing free energy per chain
which is a functional of the (possibly spatially varying)
A and B monomer concentrations:

E ~dr=A
q yg (r)yp(r), (2)

JVkT " Qo.
where p~(r) = I —pe(r) = —,

' . The area of the surface is

0; thus the number of chains in the layer is JV=Acr.
The coupling constant A has units of an inverse volume:
It is related to the Flory g via g =A V/N, where N is the
polymerization index of the chains. '

We must balance this energy against the entropic cost
of phase separation. In the case of layering, this entropy
is that of the distribution of free ends within the layer.
In the case of rippling, the entropy cost is due to more
subtle changes in the conformations of chains traveling
in different regions of the layer. A great simplification
results if we restrict ourselves to the case where the
demixing energy of a chain is much less than its elastic
stretch energy; quantitatively this is the condition A&&P
=aa, where P is the pressure at the grafting surface.
In this limit we can ignore the effect of any phase sepa-
ration on the classical trajectories described above.

Transitions to layered and rippled phases. —If we
consider phase separation, we must consider the eff'ect of
the mixing enthalpy on the statistics of the chain confor-
mations. The statistical weight 6 for a segment between
sites v' and v to run from r' to r under the inhuence of
some external potential U is governed by the forced
diff'usion equation "
[ci,, —(I/2a)V +U(r)]G(r, r';v, v')

=b(r —r') 6'(v —v') . (3)
In our situation, the potential U is made up of the pres-
sure p(z), the (much smaller) demixing potential of or-
der A(p~ —p~), and (still smaller) corrections to the
chemical potentials of orders A (P~ —P~) and higher.
The motion in the z direction will thus be dominated by
the classical motion described above, but in the x-y plane
diffusive motion must be considered.

For an A chain, to order A(p~ —ps) the driving po-
tential is a combination of the pressure and the excess lo-
cal concentration of 8 monomers (equivalently, the local
deficit of A monomers):

U(r) =p(z) —A[yg(r) fg] =—p(z) —Ay(r) . —
We presume a state uniform in the y direction, but
which has x-z structure. If we use the classical trajecto-
ry to describe z(v), we can replace u with z as a coordi-
nate. The statistical weight g for the segment of an A
chain with classical trajectory between z' and z (z ) z')
to travel from x' to x in the x direction (where the free
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end of the complete chain is at a height zi) is deter-
mined by

The weights g and 6 are related by 6=ge, where
S*(z,z';zi) is the portion of the classical (minimal) ac-
tion (1) corresponding to the portion of the trajectory
from z to z', and is of order V.

The quantity fdxidyiG(rp, ri,'O, V) is proportional to
the probability that a chain (with the free end grafted to
the surface, i.e., zp =0) has its free end at z i, in the ab-
sence of demixing, this quantity is the free-end density
da/dz ~. In the absence of demixing, (4) indicates that g
does not generate any inhomogeneity in the end distribu-
tion; thus exp[ —S*(0,zi,zi)] must be proportional to
der/dz i. '

The equation of motion (4) is obtained by expanding
the path-integral'' representation of G around its sta-
tionary point (the classical motion). Because the mono-
mer density is uniform in the y direction, and because

dzi do,', d, k [ (z) +dz', y(z')exp
dz~ " dz' 2a

the pressure does not vary on the scale of the z fluctua-
tions, we are able to consider the y-z motion around the
classical trajectory to be free diffusion. This z diffusion
may be neglected since it occurs at a scale far smaller

dv
' 2a than that of the classical motion, and the x-y motion

may be separated to yield the one-dimensional equation
8(x —x') 6'(z —z ) . (4) above.

dv
Now we compute the local concentration of A mono-

mers at a position (x,z); we begin by considering a chain
which has its free end at (xi,zi). We compute the prob-
ability of the monomer v(z) to be at (x,z) by multiply-
ing the weight for a segment of chain to be between
(xp, O) and (x,z) by the weight for the remainder of the
chain to be between (x,z ) and (x i,z i ), normalizing the
result so that the sum over final positions (xi,zi) is uni-
ty. ' ' This distribution must be integrated over the possi-
ble x and z~ coordinates of the free end. A factor of
dv/dz appears in the sum to account for the number of
monomers that the chain in question contributes per unit
height. This expression now must be integrated over all
grafted chains, i.e., over xo, to obtain the contribution of
all chains to the monomer concentration at (x,z); a fac-
tor of f~ =

2 is included since only half the chains are of
2 type.

This gives rise to an expression of the A concentration:

z f d ri fp dvG(ri, r;V, v)G(r, rp, v, O)
=p p fd r f G(ri, rii', VO)

f, dzi(do'/dzi)(dv/dz) fdxig(xi, x;zi, z)g(x, xp, z, O)
dxo

fp dz i (da/dz i )f dx i g(xi, xp, z i,0)
where it must be remembered that inside the z ~ and z ~ integrals chains are extended from z =0 to z =z

~ and z =z ~, re-
spectively. The weights g depend on p; the p which solves this equation is the thermodynamically stable state. For
small A, the solution is &=0. Our approach is to expand the right-hand side of this equation in powers of the interac-
tion A. Solution of the first-order equation (which will be linear in p) will allow us to determine when a phase transi-
tion occurs, and will also indicate the structure of the ordered state.

We assume the perturbation expansion g =g„=pg„, where g„=O(A"). The solution to the forced diffusion equation
to order A [i.e., (4) with A =01 is simply the free-diffusion Green function:

a —a(x —x') '
gp(x, x';z, z') =

[ ( ) (,)~
exp

[ ( ) (,)~
B(z —z'), (6)

where e(z) is the Heaviside unit step function, and v(z) =(2V/tr) sin '(z/zi). The equation that must be solved to
obtain g~ is

f), — B„gi(x,x';z, z') =Ap(x, z)gp(x, x';z, z');
dv 2a

this has the solution
+Zi

gi(x, x';z, z') =A dz"„dx "gp(x, x";z,z")p(x",z") „gp(x",x';z",z') . (8)oo J Jz
This first-order correction is essentially the Born approximation familiar from potential scattering: Higher-order contri-
butions have the form g„=A"gppgpp ' ' ' pgp.

If we examine p(x, z) =p(z) cos(kx), we find that to linear order the self-consistent equation does not mix modes of
different momentum k. Thus we are led to a linear integral equation for the order parameter p(z):

dv do [ dv k fv(z), ,
—v(z')

y(z) =—
~ dzi dz', it (z')exp

2 "' dz dzi "P dz 2a
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where v(z)„=(2V/tr)sin '(z/zt) is the classical config-
uration of a chain with the free end at height z~. This
equation may be solved by expansion of p(z) in Legen-
dre polynomials, and thereby reducing (9) to a linear ei-
genvalue problem, which may be solved numerically.

If we set k =0, there is an instability to a layered state
at (AV)* =8 (to 1 part in 10 ), which is 4 times the
demixing threshold for the same chains in the bulk. The
transition is second order, and slightly beyond the transi-
tion P~ —Ptt=(A —A*)' P(z), where p(z) is the uni-
versal profile shown in Fig. 1. A completely diAerent
layering calculation (to be described elsewhere) involv-

ing only classical properties of the chains, which uses the
difference between the local density of A and B free ends
as the order parameter, leads to identical predictions for
layering. In this formulation, the demixing of the ends
leads to monomer demixing, which lowers the enthalpy.
However, end demixing lowers the mixing entropy of the
ends. The competition between these two eA'ects drives
the phase transition: We find it remarkable that a com-
plete theory of layering can be constructed without any
reference to the chain conformation Auctuations.

If we do not restrict ourselves to k =0, we find a tran-
sition to p(z) %0 at (AV)* =4.549; the monomer density
difference p(z) at the instability is shown in Fig. 2 (for
all smaller A, the equation above only has the solution
&=0). We note that, given chains that bulk phase sep-
arate at (AV)b„ik=2, chains of the same species assem-
bled into a grafted layer must be at least 2.27 times as
long in order to form ripples.

The rippling transition is second order; the monomer
density difference behaves as p~

—
hatt

——(A —A*) 't p(z)
&cocos(kx) just after the transition. The wave number of
the pattern is k = 1.841 (a/V) 't =3.189R~ ', corre-
sponding to a wavelength of 2tr/k =1.970RE, we see that
the phase separation occurs at a scale far below h, and is
due to the diAusive properties of the conformations at
short length scales. Evidently this transition preempts
the symmetric layering instability since it occurs at
weaker coupling (lower molecular weight or smaller A).
We note that fiuctuation effects may modify the details
of the transition since it occurs from a state with k =0 to
one with k&0, as in phase separation of a diblock melt. '

However, our approach is exact for N
The linear self-consistent equation (9) can be alter-

nately obtained from the two-point density correlation
function of a single chain in a one-component melt layer,
as we will discuss in a future paper. This is an indepen-
dent check on our calculations, and allows a physical in-
terpretation of the kernel of the integral equation as
essentially the scattering function of a labeled chain in a
melt brush.

We expect the phase transition discussed here to be
controllable in a number of ways. First, altering the rel-
ative compositions, packing lengths, and molecular

weights ' should drive first-order transitions between
diff'erent ordered states. Our method may be systemati-
cally extended to higher order in p to predict these tran-
sitions. Second, varying the A-B proportions within each
chain should alter the relative stability of the rippled and
layered states. Finally, we expect further distinctive
properties in the regime where the composition is strong-
ly modulated, but where the mixing energy remains
much smaller than the stretching energy.
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