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The exact spectrum and thermodynamics of the 5 = —,
' Heisenberg chain with inverse-square exchange

are explicitly obtained in closed form, and a description in terms of semionic spin- —, "spinon" excitations
is developed. The unexpected degeneracies of the spectrum lead to a new representation of the k =1
SU(2) Wess-Zumino-Witten conformal field theory that exposes an infinite set of SU(2) symmetries of
that model.
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A few years ago, a new solvable spin- 2 Heisenberg
chain —with exchange proportional to the inverse square
of the distance between sites —was independently
identified by myself' and Shastry. The antiferromag-
netic ground state has a Jastrow pair-product form, '
and is equivalent to the one-dimensional (1D) versions of
the Kalmeyer-Laughlin state, the fully Gutzwiller-
projected single-band spin- 2 Fermi gas with one particle
per site, and Anderson's "resonating-valence-bond"
state. The ground-state correlations were explicitly
found, and are related to a random-matrix problem
solved by Dyson (symplectic case, P =4). The full con-
struction of the spectrum and of the thermodynamics
was not accomplished in the original work. ' In this
Letter, I report the remarkably simple solution of this
problem in terms of spin- 2 "spinon" excitations, and
from this obtain a new representation of the k =1 SU(2)
Wess-Zumino-Witten (WZW) conformal field theory
(CFT), which exposes an infinite set of SU(2) sym-
metries of that model.

The model with periodic boundary conditions on a ring
of N sites is

H=J g [d(n —n')l 'S„S„,
n (n

where d(n) =(N/tt)sin(tran~/N) is the chord distance
between spins n sites apart. In Ref. 1, a subset of the
eigenstates was explicitly obtained using a relation be-
tween the model (1) and the continuum model (at cou-
pling X =2) of 1D nonrelativistic bosons with interaction
potential k(X —1)(A /m) [d(x; —xl )] solved by Suth-
erland. Remarkably, numerical diagonalization '

showed that because of unexpected degeneracies this in-

complete set of states generates the full set of energy lev-

els of (1). The explicitly found states are identified here
as states where N, p spin- 2 spinon excitations of the
spin-singlet antiferromagnetic ground state are present,
and 5 =5'=N, ~/2. I will refer to them as "fully (spin-)
polarized spin gas" (FPSG) states. FPSG states have
M =(N —N, ~)/2 reversed spins; if jz;j =[exp(2trin;/N)j,
where [n;j are the indices of sites with reversed spins, the

wave functions are polynomials where (z;)" occurs with
powers in the range 0 & n & N, and have the form

(2)

where p([ztj) is a symmetric polynomial with degree
~ N p ln each variable z;. The basis set of polynomials

is spanned by "coherent states" P =+;~.(z; —ZJ. )
parametrized by N, ~ complex "spinon coordinates" [Zzj.
Expansion in powers of [Zjj [which are not restricted to
values where (Zi) =I] gives a basis set of g(N, ~,M)
=(N,„+M)!/M!N,~! independent symmetric polynomi-
als. The polynomials corresponding to eigenstates of (1)
are homogeneous solutions of the eigenvalue equation

g (z;8,,. ) '!t +a+
' '-(z;8,

,
—z, tl,,.)y =e!t, (3)(j ZI Zj

with k=2. Sutherland has obtained the eigenvalues of
(3) and an algorithm for generating the coefficients of
the power-series expansion of the solutions p.

The eigenvalues of (1) can be described' in terms of
M distinct "pseudomomenta" [k;j, with exp(ik;N) =1,
and 0 & k; & 2z, satisfying the Bethe-ansatz-like equa-
tion

M

k;N =2ttI;+ tt g sgn(k; —k, ),j~ f

(4)

where the set of M distinct quantum numbers I; can be
chosen in ascending order, and take values in the range
Ip+ 1,Ip+ 2, . . . , II+1 —1, where Ip =(M —1)/2 and-
IM+1=—N —(M —1)/2. There are M +N, ~ possible
values in this range, M of which are "occupied" (i.e.,

contained in the set [I;j) and N, ~ of which are "empty"
(not in that set). A configuration can be represented by
a sequence such as 0100111011,where 1 represents a
filled state and 0 an empty state. For a given N, ~, there
are the same number g(N, ~,M) of possible config-
urations as independent symmetric polynomials in the
basis set.

In terms of the [k;j, the crystal momentum K is given
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by Pk;(mod2tt), and the energy E/ J is given by

ip (tt/N) N(N —I)+pe(k;),

where e(k) = —,
' k(k —2'). Each FPSG state belongs to

a multiplet with S=N,~/2; in Ref. 1, it was noted that
these states were in general degenerate with many other
multiplets with S &N, ~/2, forming a "supermultiplet, "
but the precise nature of these degeneracies has not been
identified until now.

Before describing these degeneracies, I present the full
Schrodinger equation in Fourier space. In general, M
=(N —N, ~)/2 parametrizes the number of spinons, not
the number M' of reversed spins, which is in the range
M ~ M'~ N —M. Let the symmetric function %' (q&,
. . . , qM ) be the Fourier transform of the wave function
@([n;I); it is periodic in q;~ q;+2'. It is convenient to
define a nonperiodi c Fourier wave function + ( [q;I )
=+" ([q;J)Q;v(q;), where v(q) =1 if 0 & q (2', v(q)

if q =0 or 2n, and v(q) =0 otherwise. + vanishes
outside the M'-dimensional hypercube defined by 0 ~ q;~ 2z. For a given crystal momentum K in the range
IXI ~ x, the wave function + is confined to hyperplanes

Pq; =K+ 2trm, with 0 ~ m ~ M', and satisfies the
boundary condition %'(. . . ,0, . . . ) =+(. . . ,2', . . . ).

I define operators t; (q) with the action

t"; (q) W(. . . ,q;, . . . ) =4'(. . . ,q;+ mtt+ q, . . . ),
and introduce Lagrange multipliers g;~ that enforce the
constraint +([nj) =0 if n; =nj

forint.

j The S. chrodinger
equation for 4 (q~, . . . , q~) has the form

g V;, (q;,q, ,q')t"; (q')t", ( —q')4
iq

M'

Q e(k;) —P e(q;) 4,
where

V;. (q&, q2, q) =ttv(q~) v(q2) [tl; + V (q~, q2 q)],
with Vo(qi, q2, q) = —~ —Iql, and V~i(qi, q~, q) =(q&
+q, )/2+ ~.

For M'=M (the FPSG case), if 4' vanishes except on
the hyperplane Pq; =Pk;, and v(q;) =1 at all points
where O'%0, (7) reduces to the Schrodinger equation of
the X =2 Sutherland boson gas. Note that these Suther-
land wave functions vanish if the set [q;I cannot be ob-
tained from a permutation of [k;) by a succession of
"squeezing operations" [q;J [q ), where, for some pair
i,j, qk =q/, kei,j, q;+q~ =q +qj', and Iq! qj I( Iq;

—
q~I (this follows from a similar property of the

polynomials p established by Sutherland for arbitrary X,).
These Sutherland waue functions thus vanish outside a
convex polygonal region of the hyperplane with vertices
at the M! permutations of [k;l. Provided 0 & k; & 2',
this region is in the interior of the hypercube where
v(q;) =1, and these wave functions also solve (7).

The general solution of (7) to obtain the wave func-
tions of non-FPSG states is left as an open problem, but
from further inspection of the results from numerical di-
agonalization of (1) for N ~ 12, I have identified the
rule giving the full multiplicity and spin content of the
spectrum. For a configuration characterized by a quan-
tum number sequence such as 0100111011,every 0 cor-
responds to a spinon, and every sequence of n consecutive
0's represents a free spin with S=n/2. For example,
the content of the supermultiplet with configuration
0100111011 is obtained by combining S= —,

' (twice)
with S=l, which gives states with S=2, S=l (twice),
and S=0, and a total degeneracy of 12.

To interpret this, I note that the number g(N, ~,M) of
FPSG states is the number of ways to put N, p bosons
into M+ 1 orbitals, and I assign Bose occupation num-
bers [nkvd =II; —I; ~

—ll, i =1, . . . , M+1, where the
boson orbitals are labeled by crystal momenta k in the
range —ko, —ko+2tt/N, . . . , ko, with ko=nM/N. In
this formulation, the total crystal momentum K is
zMN+gkknl, (mod2z). The full supermultiplet struc
ture is recovered by taking the spinons to be spin- 2 bo-
sons, ~ith nk =nk++nk —,so each orbital has a total
spin nl, /2. For a given N, ~, the total number of states is
now the number of ways to place N, ~ bosons in 2(M+1)
orbitals, i.e., g(N, ~, 2M+1); summing this over M leads
to the full count of 2 states. In this description E/J is

given by Eo(M) plus

e"(k) = — 1+—gn (k)1

with boundary conditions E'(+ ko) = T- tr/2. The entro-

py density s =S/Nke has the usual Bose form

(n + l)ln(n +1)—n Inn
dk

~4 02m
(12)

geo(k)nk + g V(k —k')nk nk, (8)
ka 2 kcr, k'o'

where eo(k) = —,
' (ko —k ), V(k) =(x/2)(ko —IkI), and

Eo(M) is (tt/N) times

—,', N (N —1)+ —,
' M (M +2) ——,

' MN

There is an independent SU(2) symmetry for each of the
M+1 spinon orbitals.

It is now straightforward to obtain the equilibrium
thermodynamics: If the limit as N ~ of the ensemble
average (nk ) is the function n (k), then the limit of
(nk~nk ) is n (k)n (k') if kcrek'cr' (each occupation
number is coupled to infinitely many others in this limit,
and a "mean-field theory" in occupation number space
becomes exact). Then SE/Bnk =Je(k), where

dk'
e(k) =eo(k)+g„z V(k —k')n (k'), (10)

k0 2x

which satisfies the diA'erential equation
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n ~ =exp(2P Jf +' —,
'

Ph ) [(1+y ) 't + y], (i4)

where y=exp(2PJf)sinh(Ph/2). Substitution of the ex-
pressions for n ~ (v) and dv/dk into (12) gives the entro-

py density s(PJ,Ph); given the limits e 0 as PJ 0,
and F7~0 as Ph 0, this fully defines the thermo-
dynamics.

For h =0, the entropy density s is

I x/2

dv[ln[2cosh(PJf)] —PJf tanh(PJf)j . (15)

This has the unexpected symmetry s(PJ) =s( —PJ).
Similarly, the energy density e is an even function of J,
despite the fact that for finite N, the energy-level struc-
tures of H and Hare quite d—ifferent. Also, kp(PJ) de-
creases monotonically from n/2 to 0 as PJ decreases
from ~ to —~, with the property kp(PJ)+kp( PJ)
=tt/2. The h=0 magnetic susceptibility g=rlc7/Bh has
no such symmetry, and is given by

g = g (S„S„)= „dv exp(2P Jf) . (16)

In the antiferromagnetic case (J)0), the ground
state of the system (with even N) has S=0, and the ele-
mentary excitation (created only in pairs) is the S= —,

'

spinon, with dispersion

e'~'"'"(k) = —,
' J(k —k ) lkl (kp=lt/2.

At low energies (lk l
~ tt/2) the velocity vp is (tt/2) J.

In conformal field theory, the low-temperature, zero-
field behavior of the antiferromagnet is classified as that
of the k=1 SU(2) WZW model, a model with confor-
mal anomaly c = l. The solution of the present model al-
lows a new representation of the spectrum of this CFT,
which exposes an infinite set of SU(2) symmetries. In
the conformal limit, the energy spectrum of right-moving
spinons is given by

2xv0
' 2

+g m(n ++n )
2 m 0

where N, r =N++N, S'=(N~ —N —)/2, and N

Minimizing e —hc7 —P 's, where e =(H)/N and o
=(S')/N, by varying n (k) and kp subject to the con-
straint N, ~/N =1 —2kp/tt, leads to the Bose distribution

n~(k) =[[1+exp(TPh)]exp[PJe(k)] —lj ', (13)

where e(k) and n (k) are even functions, e(kp) =0, and
n ~ (kp) =exp(~ Ph).

The differential equation (11) can now be solved in
terms of the velocity variable v =de/dk; v dv/de =dv/dk
is given by the right-hand side of (11), expressed as a
function of e using Eq. (13). In terms of f(v)=[v
—(x/2) '1/4,

=gn~, where In~ j, m =0, . . . , ~, are a set of non-
Abelian SU(2) boson (spinon) occupations. This
separates kinematic degeneracies only present in the con-
formal limit from those resulting from the independent
SU(2) symmetries of each spinon orbital, which form a
much larger symmetry group than the standard product
of separate global SU(2) symmetries of right and left
movers in CFT. Related symmetries occur in the free
spin-2 Fermi gas, which in the conformal limit is the
sum of two independent k= 1 SU(2) WZW CFT's, one
for spin and one for charge degrees of freedom. The
generators of the symmetries of (18) must correspond to
configuration-dependent combinations of those of the
Fermi gas.

The antiferromagnetic ground state in a finite magnet-
ic field h has the magnetization c7=[sgn(h)/2][1 —(1
—lbl/h, ) ' ] for 0~ lh l

(h, =(z/2) J. This corre-
sponds to Bose condensation of equal numbers of fully
spin-polarized spinons into the orbitals with k =+ k0,
kp=(z/2)(1 —2lol). In the low-energy limit, the spinon
velocity v(c7) is given by (x/2) J(1 —2lc7l); the non-
analyticity of v(c7) as c7 0 appears to be a consequence
of the long-range exchange, and would not be expected
in a finite-range model.

For lhl & h„ the low-temperature entropy per site is
eke T/3v (c7), as predicted from Abelian bosonization. '
The T=O susceptibility g is I/2ttv(o), consistent with
the absence of a magnetization-dependent renormaliza-
tion of the longitudinal and transverse spin-correlation
exponents gll =@&=1 seen in the explicit calculation of
ground-state correlations at finite magnetization. ' The
relation 2nvg=qll =@& ' is predicted by the "Luttinger
liquid" theory, ' '' which today can be recognized as the
c =1, U(1) case of the subsequently developed conformal
field theory.

A magnetization-dependent renormalization of the
correlation exponent would usually be expected as a
consequence of low-energy "spin backseat tering" or
"umklapp" processes. ' ' A vanishing coupling for
these processes at low energies places a model precisely
at the critical point for the dimerization instability. ' As
identical particles in 1D, spinons can be considered to
undergo only forward-scattering collisions; with this con-
vention, these processes can be described as spin ex-
change between spinons during collisions. The special
feature of this model is evidently that spin exchange be-
tween spinons is entirely absent at all energies, which
also explains the remarkable level degeneracies.

Long-range ferromagnetic order appears as PJ—~, where g (and the correlation length) diverges
exponentially:

g- 4 P(IPJI~/2) '"exp(IPJI~'/».

The ferromagnetic (J &0) ground state is ordered with
S=N/2. This corresponds to Bose condensation of spi-
nons into the zero-velocity orbital. The single magnon
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excitation (AS = —1) has a dispersion

~"s"'"(k)=
4 IJI(2~lkl —k'), lkl(~ (20)

At low energies (ski 0) this has the same limiting ve-
locity as the antiferromagnetic spinon (17). This fer-
romagnet has a linear magnon dispersion because of the
long range of the exchange: For a ferromagnetic chain
with exchange J(n) —in i

', 1 ( a ( 3, the long-
wavelength magnon dispersion vanishes as ski'

A CFT-like description of the low-energy excitation
spectrum can be developed: right- and left-moving parts
each have the form

2xvp
M + g m(n i+n )—

m
(21)

where M =M or M is the number of right- or left-
moving pseudomomenta fk;j (magnons) in (5); this fixes
the ftnite number of spinon orbitals, which have occupa-
tions fn j, m = 1, . . . , M. The Bose-condensed zero-
velocity state has macroscopic occupancy n p++n p —=27
—2(M +M ) —(N, ~+N, ~): This degree of freedom is
the ferromagnetic order parameter.

At jinxed N, ~ a bosonic description (8) of the spinon
spectrum has proved useful. However, the behavior of
the spinon gas as W,~ varies has a clearly "semionic"
(half-fractional statistics) character (as in the 2D case ),
intermediate between fermions and bosons. This is seen
in the counting of the FPSG states: Addition of 2n spi-
nons reduces the number of orbitals into which the next
spin-polarized spinon can be placed by n as compared to
2n or 0 in the cases of spin-polarized free fermions or bo-
sons. This definition of statistics as the rate at which a
band (or Landau level) fill as particles are added coin-
cides with the usual Berry's phase definition in the case
of the fractional quantum Hall effect: The number of
states in a Landau level is proportional to the total flux
times the particle charge, and this changes as particles
carrying flux are added.

In conclusion, the model (1) has proved explicitly solv-
able to a remarkable extent, and it seems appropriate to
consider it in some sense as an "ideal spinon gas." Vari-
ous unsolved problems remain: The general solution of
(7) for the non-FPSG wave functions is needed, and the
generators of the hidden SU(2) symmetries of (1) and
the k= 1 SU(2) WZW CFT must be found; an obvious
question is whether they are special to this case or also
occur in other CFT's. Another issue is the identification

of the operator algebra underlying the evident integrabil-
ity of the system, and its relation to that of the nearest-
neighbor exchange model solved by Bethe. ' In this con-
text, Inozemtsev' has recently given persuasive argu-
ments for the integrability of the family of 5 =

2

Heisenberg chains with exchange

I( ) 1 g Slnhx

sinh [x (n+ mN ) ]

' 2

(22)

which interpolates between the two models. Further evi-
dence that (22) is integrable comes from a numerical-
diagonalization study' of the relation of the spinon
quantum numbers of the x =0 model (1) to the complex
rapidities of Bethe's K =~ model.
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