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Spin-Orbit Scattering for Localized Electrons: Absence of Negative Magnetocondnctance
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The distribution of hopping conductances in the strongly localized regime in the presence of both a
magnetic field and spin-orbit &SO) scattering is calculated via an analytic independent-directed-path for-
malism and a locator expansion which includes all correlations between paths. Both methods lead to a
positive magnetoconductance for all strengths of SO scattering, contrary to recent random-matrix-theory
predictions. Extensive numerical simulations demonstrate that the crossover from negative to positive
magnetoconductance occurs as the system size exceeds the localization length.

the spinor wave function at site I with spin a, and atm is
the magnetic phase associated with the bond &lm) (V is
assumed to be constant). Because of the time-reversal
invariance of the SO interaction, the on-site term is diag-
onal in spin space, and St, the SO-scattering matrix, is
given by '

aim Pl

Plm aim,

with det(Stm) =l. In this model the SO disorder (i.e.,
the distribution of al and Pl ) is independent of the site
disorder (e;).

Let i and f be two sites between which the electron
hops (i.e., e; —ef). The amplitude at site f of the eigen-
function centered at site i is given by &+f ~Sl@; ), with
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where L is the shortest length between sites i and f. I t,

denotes the set of all nt, paths of length L+ 2k, connect-
ing i and f; each path consists of an ordered set of sites
[l] and bonds f&lm)]. In Eq. (2), the path parameters jp,
Sp, and exP(imp) are given by jp = I~t c p[(e; —et)/W],
&tip =Z(im& c palm» and

r
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In the random-resistor-network theory for transport
in the variable-range-hopping regime, the conductance is
determined by the distribution of the wave-function over-
laps between hopping sites. To treat magnetic-field
effects in variable-range hopping, Nguyen, Spivak, and
Shklovskii calculated numerically the distribution of
wave-function overlaps starting from (2), including only
forward-scattering paths and with no SO scattering, for i
and f along the diagonal ([11] direction). In this case
only the no shortest paths [belonging to I o in (2)] are
relevant. Within this directed-path model, now includ-
ing SO scattering, the probability of finding the electron
at site f (averaged over initial spin directions and
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In the last ten years there has emerged a coherent
theory of the conductance and its Auctuations in the me-
tallic, weakly localized regime, which involves effects of
potential scattering, magnetic field, and spin-orbit (SO)
scattering, and agrees very well with experiments. ' In
particular, there is a positive magnetoconductance (MC)
in the absence of SO scattering, and a negative MC in
the presence of strong SO scattering. Similarly, in the
strongly localized regime, where transport is via vari-
able-range hopping, both experiments and theories yield
positive MC in the absence of SO scattering. In further
analogy to the weakly localized regime, it was recently
predicted, based on random-matrix theory, that in the
insulating phase the MC in the presence of SO scattering
is negative. In this Letter we give conclusive evidence to
the contrary: The MC becomes positive as the system
size exceeds the localization length, no matter how large
the latter is, or how strong the SO scattering becomes.

First, we calculate the distribution of the hopping con-
ductances in the strongly localized regime in the pres-
ence of both a magnetic field and SO scattering. This is
done via three approaches: (a) a general formalism,
based on independent forward-scattering paths; (b) a lo-
cator expansion, which includes all correlations between
paths; and (c) extensive numerical simulations. All
three methods lead to a positive MC for all strengths of
SO scattering. We show that these results follow from
symmetry considerations and thus are insensitive to de-
tails of the model. By extending the numerical sirnula-
tions into the metallic regime, we show that the change
of sign of the MC occurs when the system size is equal to
the localization length.

The microscopic model for hopping in the presence of
SO scattering and a uniform magnetic field consists of
an Anderson Hamiltonian defined on a d-dimensional
lattice, with disordered on-site energies taken from a
symmetric distribution of width 8' and with hopping
matrix elements which include SO scattering:

H=&«l~r)&~rl+ X «'"-sr: l~r)&~ I+H c (1)..
l, a (lm&oo'

Here &lm) denotes nearest-neighbor sites l and m, l @r) is
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summed over final spin directions) is J e, where g
is the localization length, and

8J'= 'e2"-~TrlS+Sl = g J'
q=l

(3)

In Fq (3), J =no ' pp c rj pgqp, where, for each path,
the eight components of the vector gq~ are given by
the tensorial product (cospp, sinpp) S(Reap, lmap, RePp,
ImPp).

We first calculate the distribution of overlaps P(J )
analytically, following the approach of Sivan and co-
workers, ' in which correlations between paths are
neglected, and the real path amplitudes j~ are taken
from a Gaussian distribution of zero mean and unit stan-
dard deviation. It is then straightforward to calculate
the joint distribution function of J=(Ji, . . . , Js),

P(s,A) = + oa

dJ2e 'I dJP(J)8(J' —
I
JI')vo

1

q
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where kq are the eigenvalues of A and obey Pq = i Xq
= l.

As the number of paths n, o grows, the phase matrix A
converges towards its average over the SO scattering A,
with corrections of order 1/no Then .P(s), the Laplace
transform of the total distribution of wave-function over-
laps P(J ), is given by

8

P(s) =+,&
+O(1/no), (6)

q=i (2kqs+I)'t

where Xq are now the eigenvalues of A. For the cases (a)
H =0, SO=0, (b) HAO, SO=0, (c) H =0, SO&0, and
(d) HAO, SOHO, A has, respectively, (a) 1, (b) 2, (c) 4,
and (d) 8 nonzero eigenvalues. In general, the 8 eigen-
values of A are given by R a, R b, 3 (1 —R )a,
—,
' (1 —R )b, where the last two eigenvalues have three-

fold degeneracy and where" b =no 'gp'=~sin pp, a
=1 —b, and R =((Reap) ) (( ) indicates an aver-
age over SO scattering). b increases from 0 to —,

' with
increasing magnetic field. ' R = 1 means no SO
scattering, while in the strong-SO-scattering limit
R =

4 . In the strong-field and strong SO limits of
(b)-(d) above, all nonzero eigenvalues of A are equal.
Hence, the number of eigenvalues and their values are
determined by the symmetry of the system: The lower
the symmetry, the larger the number of eigenvalues and
the smaller their values.

In principle, from the above eigenvalues, one can con-

2tt ' det A '"
where the "phase" matrix Aqq =no Pp igqpgq p repre-
sents a particular magnetic field and a particular config-
uration of SO scattering (to be averaged upon later). It
is convenient to evaluate first the Laplace transform of
P(J,A),

(ln(J )) = —y+In
2

+ +~
(b2 a2)2

a+ ln
(b2 a2) 3

(7)

As expected from the arguments above, the resulting
MC is positive and quadratic at small magnetic fields,
o(H)/a(0) =1+b . The MC, for zero and for strong
SO scattering, is plotted' in Fig. 1. Note that the MC
is smaller in the presence of SO scattering. For the four

struct the distribution function P(J ). (Indeed, for the
case with no SO scattering, one reproduces the distribu-
tion function found in Ref. 10.) However, one can cal-
culate most transport properties directly from the La-
place transform (6). Of particular importance is the
sign of the MC, which depends on the width of the distri-
bution: A narrower distribution implies fewer pairs of
sites with very low hopping rates and, consequently, a
higher average conductance. ' Since (J ) =d P(s)/
ds I, =o, the width is given by Pq 2kq, and is equal to 2,
1, j, and —„', for the limiting cases of (a), (b), (c), and
(d) above, respectively. Evidently, a magnetic field al-
ways reduces the width of the distribution and we expect
a positive magnetoconductance for all values of spin
orbit scattering. This result is in perfect agreement with
the results in the weakly localized regime, ' where strong
SO scattering reduces the width of the distribution of
conductances by a factor of 4 and, independently, a
strong magnetic field reduces the width by a factor of 2.
In that regime the width determines the amplitude of the
conductance Auctuations, ' whereas in the strongly local-
ized regime the width aAects the average conductance as
well.

To determine quantitatively the MC in the limits of
zero and strong SO scattering, we note that deep in the
strongly localized regime ' o(H) =ooexp(ln(J )). The
logarithmic average can be calculated directly from the
Laplace transform P(s) in (6). For the case with no SO
scattering, we find (ln(J )) = —

y
—ln(2)+ln(1+2ab),

where @=0.577 is the Euler constant. This implies a
positive MC, linear in the magnetic field, cr(H)/a(0) =1
+2ab, in agreement with previous theoretical ' and ex-
periinental' results (b ix H at small magnetic field). As
pointed out by Nguyen, Spivak, and Shklovskii, the
main contribution to the average of the logarithm comes
from the neighborhood of J =0, and a linear MC occurs
if, without a magnetic field, P(J =0)&0. From (6) it
follows that P(J =0)WO only for zero SO scattering.
Physically, P(J =0) =0 in the presence of SO scatter-
ing follows from the vanishing probability for completely
destructive interference in the two spin directions simul-
taneously. Thus the linearity or nonlinearity of the MC
is determined by the symmetry of the system, and we ex-
pect a quadratic dependence of the MC at small fields in
the presence of SO scattering. In the limit of strong SO
scattering,
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FIG. 1. Magnetoconductance in the variable-range-hopping
regime in the independent-directed-path model. Both with
(dashed line) and without (solid line) spin-orbit scattering, the
magnetoconductance is strictly positive. The magnetic field is
plotted in units of po/A, where go=he/e and A is the area en-
closed by a typical pair of paths (Ref. 16).

FIG. 2. Relative magnetoconductance (MC) along a strip of
length L, width m =5, and disorder W/V=4, for several values
of magnetic field (measured in flux quanta per plaquette).
Each point represents average over 15000 realizations. The
MC changes sign at L„, which obeys L„=g(L„)=11 (see
text). Inset: The L dependence of the localization length for
the same strip.

extreme cases above, where all q* nonzero eigenvalues
are equal, (ln(J )) =+(q*/2) —In(q*/2), where + is
the digamma function. Thus the conductance indeed in-
creases with the number of nonzero eigenvalues; i.e., the
lower the symmetry, the larger the conductance.

In the low-field regime where b«o/ o,oi.e., either
close to the metal-insulator transition or at very small
magnetic fields, one should use the percolation condition
for the random-resistor network in order to expand' o.

in terms of H . In that regime one always finds quadra-
tic MC, and the coefficient of H is given by

where

I = ln "+'(x)e 'x"dxn, P '7

with n = ——', , p= 1 (n =0, p =4) for zero (strong) SO
scattering. As before, the coefficient of H is positive in

the deeply localized regime, ' and the SO scattering de-
creases the magnitude of the MC.

So far, we have ignored correlations' between diA'er-

ent trajectories. In order to check analytically that such
correlations do not change the sign of the MC, we choose
the sites i and f in (2) to be in the [10] direction and
drop the restriction to forward-scattering paths. In this
case there is a single shortest path of length L between
the hopping sites. This permits us to perform a locator
expansion ' of the overlap matrix S. Expanding (2) to
fourth order in V/W, we find, ' upon averaging,

~ 2

=1+2 g "z ((Rea~) )sin p~. (8)
cr(0) W'

p g r, jo
The averages in (8) still contain all correlations between

L„=((L„) (9)

(see inset, L„=I 1 ). The numerical simulations demon-
strate that Eq. (9) holds independently of the amount of
disorder, its distribution, or the width of the strip. For
any disorder, the sign of the MC in the presence of SO
scattering changes sign from negative to positive as the
sample length L exceeds g. Importantly, since (» I,
backscattering processes make a significant contribution

diA'erent trajectories. Our previous conclusions, based on
the independent-directed-path approximation, are un-

changed by the inclusion of correlations between paths:
The MC in the strongly localized regime is positive and
quadratic for all values of SO scattering, and the magni-
tude of the MC decreases as the SO scattering increases.

For homogeneously disordered systems, near the met-
al-insulator transition, backscattering processes, which
were neglected in the directed-path approach, are
relevant to the hopping conductance. The only analyt-
ic results concerning the dependence of o on H, in this
regime, rely on scaling theory, ' which provides no infor-
mation on the sign of the efI'ect. To investigate the MC
in this regime we have performed extensive numerical
simulations to calculate the transmission coefficient
T(H) and the conductance o(H) —exp(lnT(H)), along
a strip of tight-binding sites (1) (with periodic boundary
conditions in the transversal direction), as a function of
length L, width M, amount of disorder W/V, and mag-
netic field H, for strong SO scattering. In Fig. 2, the rel-
ative MC is plotted as a function of L, for several values
of H. As expected, in the weakly localized regime
(L «g) the MC is negative, but becomes positive for
L & (. The crossover length L„,where the MC changes
sign, is determined by the localization length according
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to the simulations. Nevertheless, the MC is found to be
positive for L & g, as predicted by our directed-path ap-
proach for L »g.

In contrast to suggestions made in Ref. 4 concerning
this work, our main result, namely, a positive MC for
L & ( in the presence of SO scattering, holds even when
the magnetic flux through an area defined by the locali-
zation length is larger than the quantum flux, lllo. In
Fig. 2, for example, the total flux through the area m x g
=5x12=60 is about 12&o for the curve with 0.2 flux
quanta per plaquette.

To conclude, we have treated a microscopic model for
spin-orbit scattering and magnetic-field eAects in the
variable-range-hopping regime. Our results, both
analytical and numerical, predict a positive magnetocon-
ductance for all values of SO scattering. The crossover
from negative to positive MC occurs as the system size
exceeds the localization length. Since in order to observe
variable-range hopping the hopping length must be at
least a few times the localization length, our results con-
clusively indicate that in homogeneously disordered sys-
tems one should always observe a positive MC in the
variable-range-hopping regime. Interestingly, recent ex-
periments exhibited negative MC in the (noninteract-
ing) variable-range-hopping regime. While the negative
MC in these systems can be attributed to macroscopic
disorder and the contribution of weakly localized islands
in the samples, we hope that our results will stimulate
further experiments in order to resolve this question.
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