VOLUME 66, NUMBER 11

PHYSICAL REVIEW LETTERS

18 MARCH 1991
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We show that director fluctuations in nematics induce long-range interactions between walls, analo-
gous to van der Waals forces, which are attractive with symmetric boundary conditions, but may become
repulsive with mixed ones. They affect the swelling of lamellar phases in a nematic solvent. The same
phenomenon takes place in other mesophases, in particular in smectics, where it gives rise to forces with

longer range than van der Waals.

PACS numbers: 61.30.By, 68.45.—v

Long-range molecular forces (van der Waals forces)
arise from the interplay of electromagnetic-field fluctua-
tions with boundary conditions on ponderable bodies.'
These fluctuations may be of quantum as well as thermal
origin. In the particular case of the interaction between
grounded conducting walls, these forces are known as the
Casimir effect.? A simple-minded interpretation of the
phenomenon lies in the remark that voltage fluctuations
induce an attraction between the conductors because of
image interactions.

We show here that an analogous effects arises from
orientational fluctuations in anisotropic mesophases.
Consider, e.g., the case of a nematic slab of thickness A,
contained between two rigid, flat, parallel walls imposing
normal boundary conditions on the director (“strong
homeotropic anchoring”). This boundary condition
suppresses a number of fluctuating modes of the director
in the bulk, yielding a contribution to the nematic-wall
interface tension 7, independent of A, and an effective
wall interaction. This is represented by an excess free-
energy density §F, given by
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Here k), k2, and «3 are the Frank constants® and ¢ is
Riemann’s zeta function. The interaction exhibited in
(1) is attractive and similar in form to the van der Waals
attraction between conducting walls.* It is remarkable
that the same result is obtained with free boundary con-
ditions (“‘weak anchoring”). On the other hand, a repul-
sion is obtained if one has free boundary conditions on
one wall and normal ones on the other. One obtains in
this case
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Let us remark that this interaction diverges as one ap-
proaches the nematic-smectic-A transition, since k» and
k3 diverge while x| remains finite. This suggests that the

effect will have different behavior in smectics. We ob-
tain indeed, for the case of symmetric boundary condi-
tions,
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where B is the bulk modulus. The penetration length
x=(rq/B)'/2 is usually of the order of the interlayer
spacing. For mixed boundary conditions one obtains
— & times the above result. This interaction decreases
much more slowly than the van der Waals one, and
should become dominant when the slab thickness is
larger than a few times A.

This effect has a number of interesting physical conse-
quences. Let us consider, e.g., the possibility of swelling
a lamellar phase with a nematic solvent. It was shown in
Ref. 5 that the bending energy of an undulation mode of
wave number q for a membrane immersed in a nematic
fluid is proportional to g 3. Simple arguments show® that
the fluctuation-induced steric repulsion decreases as
d ~* where d is the lamellar separation. One would thus
a priori expect the attractive lamellar interactions, Eq.
(1), to dominate. This is not quite so obvious, since
membrane fluctuations distort the nematic, leading to an
energy increment scaling like k7'/d?, and thus compara-
ble to (1). A more detailed analysis shows that the re-
sulting interaction is in fact attractive at large lamellar
separations, preventing the formation of highly swollen
lamellar phases with a nematic solvent, unless they are
stabilized by other repulsive interactions, such as electro-
static ones.

We report here the main steps in the derivation of Eq.
(1). Details will be published elsewhere,” while the gen-
eralization to smectics and columnar phases is fairly
straightforward. We consider for definiteness a nematic
slab of thickness h, with finite anchoring energies. One
of the walls lies on the z=0 plane, and the other on the
plane z=h. Its orientational free energy’ is the sum of
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the Frank-Oseen elastic energy # g,

h
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and the anchoring energy #s,
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Here n is the nematic director, and A+ and 4 ~ are the
anchoring stiffness on the z=0 and z=h planes, respec-
tively. The ratios (xix3) /A * =1,F, i=1,2,3, define
extrapolation lengths.® Strong anchoring corresponds to
the case in which these lengths are of the order of molec-
ular size. Weak-anchoring conditions, where these
lengths are of mesoscopic size, can also be experimental-
ly realized.

We consider, in the harmonic approximation, the
effect of small fluctuations of n around its ground state,
where n is constant and parallel to the z axis.® We

define
n=(ny,n,,n,)=@@,1). (6)

The two-dimensional field n"can be split into its longitu-
dinal component n; (Vxn;=0), and its transverse one, 1,
(V-n, =0), where V is the two-dimensional nabla opera-
tor. The orientational free energy in the harmonic ap-
proximation then splits into two independent contribu-
tions, one involving only nj, and the other involving only
n;. By Fourier transformation along the (x,y) plane, the
partition function factorizes into independent contribu-
tions, one for each wave vector g=1(gy,q,). These con-
tributions may be evaluated by a number of methods,’
some of them developed for the Casimir effect, and in
particular by exploiting the analogy with the one-
dimensional quantum oscillator. One therefore obtains
the following expression for the free-energy density ¥
per unit area:
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where F; involves only the longitudinal modes, and %,

| the transverse ones. One has
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The first term is extensive and represents a contribution to the nematic free energy. The second term, independent of A,
represents a contribution to the nematic-wall interfacial tension. Both these terms are formally divergent and should be
regularized by the introduction of a suitable cutoff’ in the integration over q. The third term represents the
fluctuation-induced interaction. Its expression simplifies in both the strong- (/5= < %) and weak- (/5% > h) anchoring
limits, leading directly to Eq. (1). The result is the same in both cases, since the reduction in the number of degrees of
freedom is the same whether the boundary conditions are imposed on the variable itself or on its derivative. The attrac-
tive character of the force may be inferred by considering image interactions, since in both cases the nearest images are
parallel to each other. With mixed boundary conditions one has on the contrary, e.g., / 3> h, 15 < h, and one obtains
Eq. (2). The repulsive character of the force may again be inferred from image interactions.

Some care is needed to discuss the case of a nematic lamellar phase. The anchoring energy # s now has the expres-
sion
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Here n’is the two-dimensional director distortion defined |
in Eq. (6), u, is the displacement of the ath lamella from
its reference plane z =ah, K is the bending rigidity of the
lamella, and 4% (4 7) is the anchoring energy on the

place, in #, A + by
AF =AU+ *)%g2],

positive (negative) z side. One usually has At =4",
but more general situations may be envisaged. The cal-
culation leads to the same expressions as in (8) and (9),
except that, while #; remains unchanged, one has to re-
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where the lengths / T =(K/A4 %) define the crossover
between the regime (g2/2>>1) in which the lamella ap-
pears rigid with finite anchoring energy, and a regime
with flexible membranes (¢g2/><1). Under usual cir-
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cumstances, / is of molecular size (i.e., the second regime
prevails) and the condition > K/k, is satisfied, so that
B> A& holds in the range of interest and weak anchor-
ing is recovered. Therefore, in most cases, the longitudi-
nal part of the director fluctuations, described by ¥,
gives rise to attractive forces. Conversely, transverse
fluctuations described by F, can contribute to either
repulsion or attraction, exactly as in the case of rigid
walls.

Nematic solvents will be able to promote the swelling
of lamellar phases provided that

I >h>1; and k1> % k3. (11)

Indeed, the free energy per unit volume is then given by
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where — o is the chemical potential of the lamellae.
This expression reaches a minimum for
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A swollen lamellar phase can be produced if 4, satisfies
the inequalities (11). If o is too small, A, becomes
larger than /3", and the periodicity levels off at values of
the order of /5t. Note that the inequalities (11) are not
difficult to satisfy, since «, is larger than % k> in most
nematics and very different / & values could be realized
with highly polarized Langmuir-Blodgett lamellae.

While the methods sketched above can be applied to
smectics with little difficulty, some care must be taken in
handling the boundary conditions. The elastic energy
7 ¢ has the conventional expression®

7{E=fdxdyj;hdz%

where u is the layer displacement, B the compression
modulus, and «; the Frank constant. The anchoring en-
ergy density 7 is written most easily in Fourier space:
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For a smectic-fluid interface, A=2, and the ¢ * are in-
terfacial tensions. For a smectic-solid interface, A=1
because of the 1/|q] penetration of the distortion in a
solid, and ¢ * are suitable averages of the elastic moduli.
By going through the calculations one obtains an expres-
sion analogous to (8), where, however, only the longitu-

dinal mode is allowed, and
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The notion of strong or weak anchoring depends on the
nature of the interface. For a solid-smectic one, the typi-
cal smectic deformation energy should be compared with
that of the neighboring solid, given by ¢ T ¢, at the cutoff
wave vector (A\h) ~'/2. Strong boundary conditions cor-
respond therefore to &> (B/c)?A, which is usually sat-
isfied for h of the order of a single-layer thickness. For
fluid-smectic interfaces, one compares the interface ten-
sion ¢ with its smectic counterpart8 (x\B) 12 Close
enough to the nematic-smectic transition, one always
reaches strong-anchoring conditions, but in general any
situation could be produced.

Using the example of liquid crystals, we have illustrat-
ed the following points: Long-range forces take place in
systems whose energy is a quadratic form of the space
derivatives of a fluctuating variable. Those arising in a
nematic are akin to van der Waals forces: The case of a
crystal would be similar. In this latter case they would
obviously give rise to negligible effects: They are impor-
tant, on the contrary, in the stabilization of lamellar
phases by nematic solvents. They may be even more in-
teresting in smectics where they are of longer range, de-
caying like h ~2 instead of A ~3. They could therefore
play a role in the spreading of smectic droplets.'?
Columnar phases are intermediate between crystals and
smectics: For columns parallel to the walls, simple scal-
ing predicts a h ~%/2 decay. All these forces are compa-
rable to or larger than van der Waals interactions and
should thus be measurable with the current force appara-
tuses. !
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