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Hydrodynamic equations for semidilute polymer-solvent solutions are derived for both Rouse and rep-
tation dynamics, with emphasis on the coupling between concentration fluctuations and polymer elastic
stress. For the Rouse model, we project microscopic Fokker-Planck equations down to the hydrodynam-
ic variables plus a long-lived strain variable. Also, we construct a more general two-fluid model of poly-
mer plus solvent which shows how elastic stresses may cause diffusion currents. One important conse-
quence of this Letter is the extension of work by Helfand and Fredrickson on Rouse solutions in weak

shear to the more relevant entangled case.

PACS numbers: 61.25.Hq, 47.10.+g, 62.10.+s

There has been considerable interest for some time in
the effect of shear flow on the concentration of polymer
in semidilute solutions near phase separation.! In simple
binary fluid mixtures®3 and two-component polymer
melts* and solutions,’ shear flow in the single-phase re-
gion suppresses concentration fluctuations and phase sep-
aration. In contrast, shear flow applied to entangled
polymer-solvent mixtures leads to large increases in
scattering, with extreme sensitivity to shear near the
phase boundary.">® Whether or not this enhanced
scattering is indicative of a shifted phase boundary in-
duced by shear is controversial.

Two recent Letters proposed dynamical theories of
polymer solutions in the presence of flow; these two
theories each attempt to compute the steady-state struc-
ture factor S(g,7) in the presence of simple shear flow,
and thereby find the origin of the enhanced scattering.
The papers took different approaches, and made marked-
ly different predictions.

Helfand and Fredrickson’ (HF) derived hydrodynam-
ic equations from the Rouse model of microscopic chain
dynamics,

R (s) _ __ OFR
C[—————at v(R(s))} 3RG) TO
9°R _  OFr
3T 922 v 50 (R(s))+9.()
1

Here, R(s) is a chain configuration, v(R) is the solvent
velocity field, £ is the monomer drag coefficient, and ¢ is
the monomer concentration. Fg is the Rouse effective
Hamiltonian
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and 6 is a Langevin noise source.

The Rouse model ignores both entanglements and hy-
drodynamic interactions (and is thus valid only near the
overlap concentration ¢*). The concentration equation
was derived by applying
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to the microscopic expression for the concentration, ¢(x)
=[ds 8(x —R(s)). The result HF obtained is
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(Here © is a new noise source appropriate for concentra-
tion fluctuations.) The elastic stress tensor IT1¢ for flexi-
ble polymers is given quite generally® by
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To Eq. (3) HF added the Navier-Stokes equation for the
momentum density, and the “second-order fluid”’ consti-
tutive equation for viscoelastic stress in a polymer solu-
tion under steady flow.

The S(g) obtained by HF for low shear rates shows
enhanced scattering with effects starting at O(y), but no
shift in the critical temperature 7, (i.e., no change in the
correlation length of fluctuations with wave vector nor-
mal to the flow).

Onuki'® produced a phenomenological theory, which
could be applied to polymer solutions obeying either
Rouse or reptation dynamics. He introduced a new long-
lived state variable W;; corresponding to anisotropy of
the distribution of chain bond directions (and thus to dis-
tortion of polymer coils). Next, a phenomenological free
energy was introduced,

Fo =F0+Fe|=def(¢)+ ,',—deE(¢)trW2, (5)

with the second term corresponding to the elastic energy
of the distorted coils. This would imply that the mono-
mer chemical potential u=38Fo/8¢ =po+ pe is a func-
tion of the local state of stretch of the chains, which
leads to striking predictions; for instance, chains would
tend to migrate to the center of a Poiseuille flow.

Finally, Ref. 10 proposed hydrodynamic equations for
the elastic distortion, polymer concentration, and mo-
mentum density in the form of Langevin equations. The
most important difference!' from HF is the concentra-
tion equation in Ref. 10,
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Reference 10 concluded that S(g) was affected by the
polymer elastic terms at O(y?), and that 7. was indeed
shifted to higher temperatures by the shear flow.

More generally, the two papers may be regarded as
presenting competing versions of “polymer solution hy-
drodynamics.” Because entangled polymer solutions
have long characteristic times for relaxation of elastic
stresses, conventional hydrodynamics for polymers (i.e.,
neglect of elastic effects) is valid only for extremely low
frequencies. To increase the frequency range of polymer
hydrodynamics, one must include some equation for the
time evolution of the elastic polymer stress, i.e., for the
distortion of the polymer coils by the flow and their re-
laxation. If the stress relaxation time is well separated
from other microscopic relaxation times (e.g., for well-
entangled reptating chains, the reptation time 7, is
much longer than the Rouse time 7z for primitive path
fluctuations'?), the hydrodynamic regime of frequencies
is thereby greatly extended. Dynamical equations for
polymer elastic stresses have a long history; convenient
differential-equation forms for viscoelastic constitutive
equations have been obtained by Marrucci.!> Once the
polymer stress (or equivalently, a strain variable) has
been added to the set of hydrodynamic variables, the
coupling of this variable to the polymer concentration
must be obtained. The physics of entangled polymer
solutions in flow which is not present in the rheology of
polymer melts is precisely this: that the polymer elastic
stresses may induce relative flow of polymer and solvent,
i.e., polymer diffusion currents. When the stress relaxa-
tion time is long and the osmotic compressibility of the
polymer is large, as for entangled solutions near 7., one
may expect large elastically induced polymer concentra-
tion variations in a shear flow.

The two questions which this paper answers are (1)
which of the HF (Ref. 7) and Onuki (Ref. 10) theories
is the correct description of polymer hydrodynamics for
Rouse chains and (2) how does the model change when
extended to reptation kinetics?
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with Onsager coefficients given by
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To answer the first question, we derive the hydro-
dynamic equations for the Rouse model in a different
way from HF, which turns out to expose a shortcoming
of the phenomenology of Ref. 10. We present the Rouse
equations, which are coupled Langevin equations for the
positions of the beads on a Rouse chain, as the equiv-
alent Fokker-Planck (FP) equation for the phase-space
distribution function of the entire set of microscopic
chain variables (denoted by ¢),
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We then employ a procedure developed by Kawasaki and
Sekimoto'* for projecting a FP equation for the distribu-
tion function of microscopic phase-space variables to an
FP equation for the distribution function of the hydro-
dynamic variables. We take the set of variables to be the
monomer concentration ¢(x), the momentum density
gj(x), and a strain variable w;;(x) defined similarly to
Ref. 10 in that Tow=I1. The basic idea is to (1) in-
tegrate the FP equation over the microscopic variables
while constraining the hydrodynamic variables to a par-
ticular value, and (2) make the local equilibrium approx-
imation that the microscopic variables quickly relax to
the state of equilibrium consistent with the local values
of 0, Wij, and &j-

From the projected FP equation, one can convert back
to coupled Langevin equations for ¢, w;;, and g;, which
are the desired hydrodynamic equations. Our main in-
terest is in the Onsager coefficients, since it is here that
the two models disagree. These Onsager coefficients
form a matrix both in space coordinates {r,r} and in the
variables {¢,w,-j}. The expression for the projected On-
sager coefficients from Ref. 14 is
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and similarly for A?’. This leads to a concentration
equation
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The existence of off-diagonal Onsager couplings is a
strong indication of what is amiss with the concentration
equation of Ref. 10. To see this, we combine the two
dissipative terms of Eq. (9); part of the off-diagonal term
cancels the elastic term of Eq. (6), leaving

09
9z

F.
+V~u¢+§‘_lV-¢V8—6¢£+2§"lVV:w' %

ap

We may identify the last term as precisely the elastic
term of the HF concentration equation, by the following
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argument. Under an affine deformation r'=E-r, the
polymer strain variable w is mapped to w'=E- w®.ET
where the equilibrium value for the strain tensor is w,-§°)
=4;;. Now, the general expression for the stress in a
medium under finite deformation is I1=(SF/8E)-ET,
and in fact the free energy F is only a function of the
Cauchy-Green strain tensor C=E-E7. This leads to
=(26F/5C)-C =2w-8F/éw. (This result may also be

obtained by computing the projected free energy F
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=In(exp(— Fg))is.wi; for the Rouse model, the result
is F=[dvIf(¢)+ 5otr(w—Inw)].) Hence, for the
Rouse model, the HF expression for the polymer concen-
tration equation of motion is correct, while the Onuki ex-
pression neglects the off-diagonal Onsager coefficients.

At this point it is worth noting an apparent paradox
regarding the motion of Rouse chains in shear flow, and
its resolution. To consider the center-of-mass (c.m.)
motion of a single Rouse chain, we sum the Rouse equa-
tion over beads, eliminating all effect of intrachain spring
forces. For a constant average density we obtain

HRen) _ L[ teur(s)) (12)
Hence the average Rouse c.m. velocity is equal to the
bead-averaged fluid velocity at any instant. If the shape
of the Rouse chain stays roughly constant in time, then
the chain c.m. must move with the fluid [up to terms of
order O(V,V;v)].!> How then can there be a monomer
current as in Eq. (3) which depends explicitly on elastic
forces, since the current of c.m. positions is independent
of elastic forces?

The resolution of this paradox depends on contribu-
tions to the monomer current which come from varia-
tions in space of the local average shape of chains. Sup-
pose we have a constant density of c.m. positions ¢c.m (x)
=gy, while the monomers of a chain with c.m. at x¢ are
distributed about x¢ in a normalized cloud C(x — xg;x0).
The shape of the monomer cloud varies with its c.m. po-
sition, and is given by X;;(xo) =fdx C(x;x¢)x;x;. Then
the monomer density is given by

p(x) =¢0fdx0C(x —X0;X0)

= ¢oll + 7 V;V,Z;;(x)]. 13)
This illustrates that the monomer density may differ
from the chain c.m. density precisely when the chains are
distorted inhomogeneously in space, and hence the
monomer and c.m. position currents may differ as well.

The interesting experiments on shear dependence of
scattering in polymer fluids are typically carried out in
well-entangled solutions, for which the Rouse model is
inappropriate. We must therefore extend the concentra-
tion equation (11) to the case of reptation dynamics.
Rather than projecting the FP equation for microscopic
reptation kinetics onto hydrodynamic variables,'® we
shall pursue a more physical approach, of considering
the polymer-solvent system as a generalized two-fluid
model. Such models have been previously employed,
e.g., to study dynamic fluctuations of semidilute polymer
solutions. !7~!?

Instead of focusing on the kinetics of a single chain in
the solution as for the Rouse case, we instead consider
the forces acting on a small volume of semidilute solu-
tion. We incorporate the following stresses into the
equations: (1) Monomer-monomer interactions, which
we take to be a function of concentration only: I1
= —u(¢)é;;. Having ruled out the mechanism of Ref.
10 for the Rouse model, we assert that the chemical po-

tential does not depend on local strain for entangled
chains, if swelling effects are small.?’ (2) Chain elastic
stresses, which have a microscopic stress tensor IT® in
the general case given by Eq. (4). These forces are com-
municated down chain backbones. (3) Fluid stresses
Y, including solvent shear stress + 15 (Viv;+V;v;) and
hydrostatic pressure — pé;; (which enforces incompressi-
bility of the solvent plus polymer). In well-entangled
solutions, only the fluid pressure is significant. (4) Large
drag forces between fluid and polymer when relative
motion is present. For the Rouse model this is just
Stokes drag on each bead; in general, we may think of a
Darcy coefficient I' "' (¢) in the two-fluid model.

We may write equations of motion for the polymer
and fluid mass and momentum densities, and the poly-
mer strain variable, as (here pp =m¢, m is the monomer
mass)

¢+m~'V-g,=0, pr+V-g,=0,

& — V-1 =v-11® —r($) (v, —1v,) =0, (14)
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The polymer and fluid momentum densities are not sepa-
rately conserved; they are coupled by the large drag term
which causes the two velocities to remain nearly equal.

The reason for writing the equations this way, as op-
posed to writing one equation for the conserved total
momentum density g=gs+g, (in which the polymer-
fluid drag forces cancel), is that we have physical insight
as to the form of the forces acting on the fluid and poly-
mer separately. The polymer osmotic and elastic forces
act directly on g,, while the solvent viscosity and pres-
sure terms act on gy.

Having written these equations, we promptly seek to
eliminate explicit reference to g, and v, in favor of
equivalent diffusion fluxes in the conservation equation
for p,. Because p, <py in semidilute solution, we drop
the inertial term in the polymer momentum equation,
and solve for m ~'g, =¢v, as

m gy = pvr+¢ 1 (9)(V-TTIO+vV- 1) | (15)
where we have defined ¢(¢)=¢ ~'T'(¢).

We may then substitute for g, in the ¢ equation, re-
tain only the total momentum-conservation equation,

and enforce incompressibility of the total system; the re-
sult is?!

¢+V-u¢—v-g"'¢v%§+v~;‘lv-n‘8’=0,
(16)
g—-v-n‘f>+g"¢vfs—§—V-n‘*’>=o, V-g=0.
The osmotic and elastic force densities V-1 = —Vu

and V-11® acting on the polymer induced relative flow
between polymer and solvent. We call the flow induced
by osmotic pressure a (cooperative) diffusion current
when it appears in Eq. (16), while in Eq. (15) it results
in a nonzero relative velocity between polymer and sol-
vent. The novel effect in the present case of a viscoelas-
tic solution is that the elastic force density V-I1) may
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also produce a monomer current. The divergence of this
current is the source term proportional to VV:I1“ in the
concentration equation.

For the Rouse model, it is evident that the drag
coefficient I is given by I' =6xna¢, which leads directly
to the HF result, with {=6rna. However, we are no
longer limited to considering the Rouse model. In par-
ticular, we are free to take I'~n/&%(¢), which is not in
general proportional to ¢. (In © solvents, e.g., T ~n¢%;
in good solvents, I'~¢2"3v=1 22) Thjs leads to the
more general source terms in the concentration equation
(16).

To complete the model for reptating chains, we may
then choose an equation of motion for the polymer strain
appropriate to reptation, which shows shear-dependent
viscosities and normal stresses. '*

We have given a derivation for the Rouse model of the
matrix of Onsager coefficients which occur in the cou-
pled Langevin equations of polymer solution hydro-
dynamics; this derivation makes clear the importance of
the off-diagonal Onsager couplings, which were not in-
cluded in Ref. 10. We have also presented general, phys-
ical arguments in terms of a two-fluid model as to the
form of polymer hydrodynamics for entangled chains,
and find that the coupling of polymer elastic stresses to
the polymer concentration is of essentially the same
form.

For the experiments in progress on entangled chains in
shear flow, we may conclude that the results of HF at
fixed ¢ and sufficiently low shear rates (y7.p<<1) apply
qualitatively to semidilute polymer solutions; in particu-
lar, the steady-state S(g) at low shear rates will be al-
tered according to?3

[S(q,7) —S(g)1/S(g) = 2T "'k k,78n/d¢ .

The values of the coefficients appropriate to the entan-
gled case are of course quite different from the Rouse
case; because we may have 7> 7g, and hydrodynamic
screening implies 1/} <a¢p, we may expect a semidilute
system to be much more sensitive to shear than a Rouse
model at the same concentration and molecular weight.
(The stress relaxation time is greatly increased, so that
elastic stresses build up, while the fluid drag coefficient is
greatly reduced by screening, so that relative motion of
polymer and solvent is enhanced.)

The important question of what predictions this model
makes for experiments on polymer solutions under shear
for higher shear rates (y7.p>> 1), and the limits of appli-
cability of the model in the high shear regime, are sub-
jects for future work.

The author thanks Glenn Fredrickson, Bill Graessley,
Akira Onuki, Dale Pearson, and David Pine for useful
discussion.

Note added.— A similar two-fluid model has been pro-
posed by Doi for problems of polymer migration and
phase separation in semidilute solutions under shear.?*
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