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Hermitian Structure for the Linearized Vlasov-Poisson and Vlasov-Maxwell Equations
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The linearized Vlasov-Poisson and Vlasov-Maxwell equations are shown to have a structure closely re-
lated to the evolution equation of quantum mechanics, in terms of a nonstandard Hilbert space. This
Hermitian structure yields information about spectral properties, as well as a theory for dynamical in-

variants. We find accordingly how certain well-known features of the spectrum generalize to the nonuni-

form case, and we also rederive a recently found exact dynamical invariant in a very natural and simple

way.

PACS numbers: 52.25.—b, 52.35.—g, 52.55.—s

The analysis of linearized Vlasov-Poisson equations by
van Kampen and Case some thirty years ago explicitly
determined the spectrum and eigenfunctions in the un-

magnetized uniform case. ' These results have been
generalized in several ways (see Sedlacek, and refer-
ences therein). However, van Kampen and Case found a
non-Hermitian structure of the linearized Vlasov-Poisson
operator, and this has been an obstacle in all these later
developments. A Hermitian structure would, of course,
have saved us from separate analysis of adjoint. equa-
tions. Furthermore, when an operator is known to be
self-adjoint, there is a body of general results and tech-
niques promoting further developments.

In the present paper we find an underlying Hermirian
structure of the linearized Vlasov-I'oisson and Vlasov-
Maxwel/ equations (hereafter referred to as the LVP
and the LVM equations). The results are obtained for a
stationary but otherwise general nonuniform background
state. There are two major novel features in this theory.
First, the space of fields is not given the structure of a
standard Hilbert space. Instead we find a natural inner
product which induces a pseudometric (i.e., an indeftnite
metric). We will use the term pseudo Hilbert space-for
our spaces of fields equipped with such an inner product.
Second, in place of the perturbed distribution function f
as one of the fields, we use the generator 5 of particle-
orbit perturbation. (There is, of course, a simple rela-
tionship between f and S.) In this way the LVP and

LVM equations have a place within the well-developed

general theory of Hermitian operators on spaces with

indefinite inner products. " We obtain a theory in close
analogy to quantum mechanics, and expect that future
developments and applications of the theory will include
the use of techniques from that area.

While the LVP and LVM equation provide the foun-
dation for much analytical and numerical work in plas-
ma physics, only very few results about their underlying
mathematical structure have been known. The full non-
linear Vlasov-Poisson and Vlasov-Maxwell equations are
Hamiltonian in terms of Poisson-manifold structures.
The LVP equations are known to inherit this property

and the LVM equations are expected to do so. Recent-
ly, Morrison and Pfirsch' proved that a quantity inter-
preted as "the energy of perturbation" is an exact invari-
ant of the LVM equations. (This result will be obtained
in a very natural and simple way from our formalism. )
These previous results are here complemented with a
sound setting for the spectral theory of the linear opera-
tors associated with the LVP and LVM equations. In
the case of a uniform unmagnetized background plasma
the spectral properties of the LVP are known from the
analysis of van Kampen and Case. Some further infor-
mation was obtained by the technique of spectral defor-
mation, borrowed from quantum mechanics and modi-
fied by Crawford and Hislop to meet the needs of plasma
physics. " (This is also a good reference when we con-
sider the consistency between these spectral results and
the general mathematical structure we present. ) The
spectrum obtained when the plasma is unstable consists
of a continuous straight line through the origin as well as
isolated eigenvalues appearing away from this line and
associated with unstable solutions of the usual dispersion
relation. It is clear that an "essentially" Hermitian'
operator on a standard Hilbert space cannot be associat-
ed with this spectrum. However, it is consistent with a
Hermitian operator on a pseudo-HilberI, space.

We shall now show that both the LVP and the LVM
equations are closely associated with Hermitian opera-
tors on pseudo-Hilbert spaces. There are certain non-
trivial considerations needed in order to give the precise
mathematical structure required for a good spectral
theory to exist. As in most textbooks in quantum
mechanics, we consider only the finite-dimensional case,
assuming that the generalizations needed in reality are
straightforward. This approach turns out to be instruc-
tive; it explains nicely from general theory some charac-
teristic features of the spectrum obtained by van Karn-
pen and Case, and shows that they persist also for a non-
uniform plasma. For notational convenience we consider
a one-component plasma and take q =m =~ =po = 1.
The generalization to several components is trivial.

The stationary background plasma is given by (Fo,
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Ep, Bp), where Fp(r, v) denotes distribution function and
Ep(r) and Bp(r) electric and magnetic fields. The equa-
tions for the background imply

[Fp, Hpj =0, Ep = —Vgp, Bp =V&& Ap. (1)
Here Hp(r, v) = —,

' v v+ pp(r), and the Poisson bracket is
defined for arbitrary functions a (r, v) and b (r, v) by

[a,bj:B—,a 8„.b —B,b B„a+ Bp B„a&& B„b .

Equations (1) give the Vlasov equation for the back-
ground distribution, as well as VXEO=O and V 80=0.

Both the LVP and the LVM equations are closely re-
lated to equations with the following general mathemati-
cal structure. There is a Hermitian operator H defined
on a pseudo-Hilbert space P with inner product (, ). The
dynamical equation for y C V is

Hl/I = i 8t lp . (2)
In the LVP case we take 7 as a space of time-

dependent complex-valued fields S on (r, v) space. For
S~ and S2 in 2, we define their inner product by'

(S),Sp)=i „[S)*,S2jFpd rd v . (3)

Note that (S,S) =0 for real-valued S. We define the
operator H by

HS: —i [S,Hpj+—iy(S), (4a)
where the scalar potential p(S) depends linearly on S as

I [Fp,sj(r, r', v')
y(S)(r, r) =——J~, d r'd'v'. (4b)

4+fr —r'[

We can now prove that H is Hermitian, i.e. , (S~,HSq)
=(HS~, S2). %'e note that by defining f= —[Fp,Sj, the
LVP equations are obtained from (2) and (4) [operate
on (4a) with [,Fpj]. It is also easy to see that H has the
same spectrum as iL, where L is the usual linearized
Vlasov-Poisson operator. '' The proof that H is Hermi-
tian is a straightforward calculation, using the rules for
manipulating Poisson brackets and partial integrations.

In the LVM case (using the radiation gauge) we have
2 as a space of time-dependent complex-valued fields
y=(S, E,A), where S is defined on (r, v) space as be-
fore, while the electric- and vector-potential perturba-
tions E and A are defined on r space. The inner product
is defined as

(I/I), I/f2) =1 t [S]*, S2jFpdr d v

+i „I (E)* A2 —Ep A)*)d'»,

and we define H by

Hy= i( —[S,Hpj —v A, V—x(V&A) —J(S,A), —E),
(6a)

where the perturbed current density is

S(S,A) -="v(—[F,,Sj+A. a„Fp)d v. (6b)

We can then easily prove that H is Hermitian, i.e. , (t/»&,

Hy2) =(Hy~, t/»2). We define f= —[Fp,Sj+A d„Fp, and
it is straightforward (but now with a little more algebra
than in the LVP case) to obtain the LVM equations
from (2) and (6).

We obtain some information about the diAerence be-
tween the spectral structure of a Hermitian operator on
a Hilbert space and on a pseudo-Hilbert space by the fol-
lowing linear-algebra result (I) and its generalization
(II).

(I) Let V be a finite-dimensional standard Hilbert
space and let H be a Hermitian operator on V. Then
there exists an orthonormal basis (y~, . . . , y„) for V,
consisting of eigenvectors for H; i.e., (a) Hy~ =l~.y~, (b)
(y;, y, ) =8~/.

(II) Let V be a finite-dimensional vector space V with
an indefinite inner product which is nondegenerare'
(i.e., if (y', y) =0 for all y' E V, then @=0). Let H be a
Hermitian operator on V. Then there exists a basis 8 of
V consisting of the eigenvectors yi, . . . , y„ for H and a
1-1 mapping 8 8, which we denote by superscript "f"
as 1/I y, such that (a) Hy~ =A~y~; (b) if k~ is real,
then y~l =yj.; (c) if y~t=y;, then A, ,

* =k~. where "e"
means complex conjugation; (d) ~(y;, y~)~ =6~.

The proof of these two results consists of the (general-
ized) Gram-Schmidt orthogonalization procedure using
the equality (l~* —Xq)(y~, yq) =0, valid for eigenfunc-
tions yi and y2, such that Hy; =k;y; for I =1,2.

Consider now an eigenvector ttI~ with a nonrear eigen-
value X[, for the LVP or the LVM case. A slight exten-
sion of result (II) tells us that we are allowed to let y~ be
an element in the basis B. Then y2 =pi is also an eigen-
vector with eigenvalue X2=X~ . By complex conjugating
Hy~ =A, ~y, , we obtain Hy~* = —X~*y~* [from (4) or (6)
we have H = —Hl. Thus a third eigenvector y3 =

y~
with eigenvalue k3 = —ki is obtained. Finally, we have
y4=yf with k4=k3 = —X~. Thus, in the general case,
nonreal points in the spectrum appear in quadruplets
(X~,X~*, —k~, —X~*). We also have (y;, y/) =0 when
A, ;&Xj*, which in the particular case considered by Case
and van Kampen may be seen to follow explicitly from
the dispersion relation. Precisely this quadruplet struc-
ture is seen in the Case-van Kampen analysis (e.g. , Ref.
11, Fig. 1).

Let us now consider dynamical invariants associated
with (II). If a time-independent operator A commutes
with H, then (y, At/») is a dynamical invariant. For A
=H" (n =1,2, . . .), we thus find an infinite set of

dynamical invariants. %'e easily rederive the Morrison-
Pfirsch result [Ref. 10, Eq. (13)] by calculating (y, Hy),
using (5) and (6):

(y, Hy) =Jl ([S,Fpj[Hp, Sj+A*.AFp —[S*,Fpjv A —[S,Fpjv A*)d'rd'v+ (E E*+8 8*)d'r.
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If the background has a symmetry, we may find an asso-
ciated dynamical invariant, such as the angular momen-
tum of a tokamak, or the helical momentum in the
wiggler field of a free-electron laser. Mathematically,
we must find the operator associated with each symme-
try. A time-independent vector field g on ordinary r
space has an associated operator Xs acting on the fields
as the appropriate Lie derivative. The background state
is symmetric with respect to g if 0 and Xs commutes.
Then (ttr, Xsy) is the corresponding dynamical invariant.

The formulas and the mathematical structure for the
LVP and LVM equations were found by using an action
principle related to the well-known formulation by
Low. ' By noncanonical Hamiltonian analysis, we ob-
tained the basic mathematical structure presented in this
paper from the Euler-Lagrange equations. '
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