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Collisionless Reconnection and the Sawtooth Crash
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A model of the sawtooth crash is presented in which electron inertia combined with anomalous
diAusion of the current replace classical resistivity in allowing magnetic reconnection to occur.

PACS numbers: 52.30.—q, 52.35.—g

Experimental measurements of the sawtooth crash
time z, in the TFTR and 3ET tokamaks range from 20
to 2000 psec. ' The crash time, based on a Sweet-
Parker model of reconnection by the m =1 tearing mode,
is of order 2000 psec, which is short enough to explain
the slow crashes, but not the fast crashes.

In this paper we show that the electric field E induced
during magnetic reconnection during the sawtooth crash
greatly exceeds the Dreicer field ED, and, therefore, clas-
sical resistivity cannot play a role in this process. Includ-

ing electron inertia in Qhm's law allows reconnection to
proceed. We present numerical simulations which
demonstrate that the current layer during collisionless
reconnection using this new Qhm's law collapses to a
thickness which is much smaller than the electron col-
lisionless skin depth 6=c/co~„contrary to conventional
scientific wisdom. This narrow current layer throttles
the nonlinear reconnection rate and, as a consequence,
inertial reconnection cannot, by itself, cause the fast
sawtooth crash. The extremely narrow current layers in-

duced during collisionless reconnection are strongly un-

stable to the collisionless current convective instability.
We estimate the anomalous current diAusion rate due to
this instability to be

D~ =p, BV~v((, .

Electron inertia combined with anomalous current dif-
fusion given by the expression (1) produce sawtooth
crash times which are in reasonable agreement with ob-
servations.

Under the assumption that the sawtooth crash is

caused by Kadomtsev-like magnetic reconnection, the
parallel inductive electric field can be readily estimated.
The helical magnetic Aux which reconnects during the
crash is of order y* =Aqr(8&/R, where 8& and Be are
thc torolda1 and po1oidal Inagnctic Acids, R 1s thc ITlajor
I'adlus, P'

~ 1s thc radius of thc q = 1 sul face, Aq = 1
—

q (0), and q (r) =rB&/RBe. The induction field E
—y*/cr, so that E—hqr ~ 8&/cr, R. The Dreicer electric
field is given by ED =m, &, vv„/e, with v„ the electron
thermal velocity and v„ the electron-ion collision rate.
Thus,

E/ED =i5qr ~ /r, Rv„p, , (2)

with p, the electron Larmor radius. For parameters

As g 0 electron inertia prevents J from becoming
singular. In 2D MHD the generalized Qhm's law be-
comes an evolution equation for the Aux function y,

dt
(y —8 V~ y) = tlV& y. (4)

Equation (4) has been written in dimensionless units:
aV~ V~, t/r~ t, y/Ba y, 8/a 6', and ric r~/
4tra = rg/rp ~ tl.

The electron inertia introduces a new scale length, the
skin depth 6, into the equation. It has been assumed in

the past that the scale size of the "dissipation" region
during collisionless reconnection is 8. In the linear re-
gime 6' is the scale size, although the finite ion Larmor
radius may broaden the layer somewhat. To explore
the nonlinear behavior, we have written a 2D code which
advances the isothermal compressible MHD equations
with the generalized Ohm's law in (4). The equations
are solved on a Cartesian grid using a fourth-order-
accurate finite-difkrence scheme with grid scale hyper-
viscosity. Time stepping is with a second-order-
accurate leapfrog trapezoidal scheme. " The sawtooth
crash time depends on the nonlinear structure of the dis-
sipation region. To simplify the geometry, we have stud-
ied the structure of the dissipation region during the
merging of two isolated circular Aux bundles of radii
r0=0.3, peak magnetic field 8~=0.7, and Alfven time
&~ =ro/Be=0. 39 as shown in Fig. 1. The system is taken
to be symmetric about x =0, so the second Aux bundle
can be obtained by reAection. The sequence of Aux con-

characteristic of TFTR (8=4 T, T=7 keV, n =S X 10' /
m, r~ =0.2 m, R =2.6 m, r, =3S psec), ' E/ED =3.S
&10 Aq. Thus, E &ED even for small values of hq
(—10 ). For E & ED, classical collisions are not
eAective in limiting the electron response to the parallel
electric field. Classical parallel resistivity can therefore
not be the dissipation mechanism for magnetic energy
during the sawtooth crash.

Qhm's law in resistive MHD, E((=gJ, is simply the
parallel component of the electron momentum equation.
When classical collisions are absent or weak, a general-
ized Ohm's law can be obtained by simply including
electron inertia,

(3)
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tours are from a run with 6=0.1 on a 1000x132 grid.
Shown in Fig. 2 are cuts of J(x) through the x line over
the interval 0~ x ~ 0.05 for the times shown in Fig. 1.
The entire region shown is 0.56 in the x direction. A
current layer is formed around the x line with an initial
scale length along x of order 0.56'. As reconnection
proceeds the x scale length L of the layer shrinks. The
collapse of the current layer continues until reconnection
ends. At smaller values of 6, the current layer collapses
until our grid can no longer resolve the structure. Physi-
cally, the electron Auid is carried into and then out of the
acceleration region where E~~&0. Finite electron inertia
combined with the finite transit time through the ac-
celeration region limits the electron current. However,
the x line is a stagnation point of the Aow so that elec-
trons close to the x line remain in the acceleration region
for a long time; i.e. , electrons very close to the x line are
accelerated as long as reconnection continues. The result
is a highly localized current layer.

The collapse of the current layer greatly reduces the
rate of reconnection in the nonlinear regime since a sim-
ple Sweet-Parker scaling argument yields peak reconnec-
tion velocities v„~I. Thus, contrary to previous specu-

12lations, electron inertia by itself cannot produce fast
sawtooth crashes consistent with observations.

That a localized current layer with a scale size L much
smaller than 6 could survive in a real 3D system seems
implausible. We expect that this narrow layer will be
strongly unstable well before it collapses to the scale
length shown in Fig. 2 and that the resultant transport of
electron parallel momentum will prevent the collapse of
the current layer. We have investigated the stability of
the electron current layer in the regime L —6. The dom-

inant instability is the current convective instability with
unmagnetized ions. This instability is electrostatic
for wave numbers k & 6' ' and electromagnetic in the
opposite limit. The characteristic growth rate is y

i/2(k llv lie roe v k II ves ) . where e ky~Ti/e~L
diamagnetic frequency based on the current gradient
scale length L =(v((e/vIie~, v„=(T,+T;)/m„a nd k(( is
the parallel wave vector. The growth rate peaks at k~~0

/ 2
v lie rue v/ves with 'Y (v lie/ves ) rue v/~~.

current layer produces a local shear in the magnetic
field which could impact the instability. This local shear
is unimportant if k()p & Ak((-kABy/8, where ABy—4znev ~i,L/c is the jump in the magnetic field across the
layer. Inserting k~~0 into this inequality, we find that lo-
cal magnetic shear can be neglected for L & 6'. For
L & 6 the shear localization distance h, is given by
~-a'/L.

The current convective instability has substantial simi-
larity to the slab g, instability. ' In both instabilities the
ions are unmagnetized and respond adiabatically to the
perturbed electrostatic Aelds and the parallel compres-
sion of electrons plays a central role in driving the insta-
bility. The set of nonlinear equations describing both in-
stabilities are identical. Previous Auid simulations of the
q, instability' provide a guide in estimating transport
by the current convective instability. In the limit of
weak shear, transport is dominated by the longest wave-
lengths in the system. For L & 6', k-L ', and the radi-
al step size h, —L. Thus, D& —6 y —v~~, p, . When the
shear is strong, 5—8 /L and D~ ~ y pe& —vi~e/L .
a simple model for local transport, we use the expression
given in (l), which approximates the expression for D~
in both limits if L is not too diAerent from 6. Our evolu-
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FIG. 1. Flux contours iis in the (x,y) plane at times t/&~
=0, 3.7, 4.1, and 4.7 from a simulation of collisionless recon-
nection with 8/a =0.1.
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FIG. 2. Cuts of J along the midplane over the interval
0~ x ~ 0.05 at the times shown in Fig. 1.
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tion equation for the magnetic flux now takes the form

dy 2 d—8 —V 0 V J=gJ
dt dt

with

D. =a'p'"(x gaJ/axl+y yl»/~3 I)

and P =Pm;/m, .
A series of simulations have been completed with the

iiux evolution equation given in (5) for a range of 8
(2.5&&10 &8 &10 ). In Fig. 3 we show contour
plots of y, J, v, and v~, t =6.1, from a run with
b =10 and p =18.36 on a 1000x132 grid. At this
point in time about half of the magnetic flux in Fig. 3(a)
has reconnected and a narrow current layer has formed
around the magnetic x line. A cut of J along the mid-
plane is shown in Fig. 4. During the entire run the half-
width L of the current layer remains nearly constant
with L-2.56'. The anomalous current diffusion prevents
the spatial collapse of the current. At the time corre-
sponding to Figs. 3 and 4, the integrated current across
the layer has reached a maximum, i.e., the jump in the
magnetic field across the layer is a maximum, hB~ —0.7,
which is also the peak Alfven velocity in our dimension-
less variables. The contours of u„ in Fig. 3(c) illustrate
that the magnetized flux bundle is moving toward the x
line with a nearly uniform velocity, v = —0.20. This
plasma is ejected at high velocity along the y direction
[Fig. 3(d)) with a maximum speed of v» —0.71, which is
basically the Alfven speed.

The structure of the reconnection region in Figs. 3 and
4 is consistent with a Sweet-Parker-like model. ' By
balancing the various terms in the Ohm's law in Eq. (5),
we can derive the scaling of the width L of the current

layer and the inAow velocity v with 8 and p. The con-
vection of the magnetic flux into the dissipation region
must balance the current diffusion,

Qy vx l/
v — —5 V~ D~ V~J

ax

—8 —b P —J —J2 1 3 "&/2 1

L L

and since J—1///L and JL —/5. B» —1,

p5p1/2/L 5

The flow in and out of the dissipation region is nearly in-
compressible. Thus, v —v~L, where the inflow is over
the length of the dissipation region along y which is of
order 1. Since v~-c~ —1, v„-L and

1/6b 5/6p 1/12 (6)
with

4 8 (g ) 5/6p1/12

where the coefficients 1.1 and 4.8 are determined from
the simulations. It should be emphasized that L and v„
are very insensitive to the precise form of the anomalous
diffusion rate (note the factor P

' ' ). Thus, any
difference between the expression for D& in (1) and the
actual expressions for D& in the limits 6~&L does not
significantly affect v„or L.

With the expression for v„ in (7) with a given by r1,
the sawtooth inversion radius, and c~ the helical Alfven
velocity, we can estimate the time required for a col-
lisionless Kadomtsev-like reconnection during the saw-
tooth collapse. For TFTR (with numbers given previ-
ously) 8/r1=4x10 and r, —rl/u„=(4 psec)/Aq. For
hq —O. l, r, —40 psec, consistent with the observations of
fast sawtooth crash.

Although the motivation of the present calculation was
the apparently collisionless sawtooth crashes on TFTR
(Ref. 1) and JET, the expressions for v„and L also ap-
ply to more collisional machines with E & ED if L in (6)
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FIG. 3. Contour plots of y, J, v, and v~ at t =6.1m~ from a
simulation with 6'/a =10 and P =1S.36.

FIG. 4. Cut of J along the midplane from the simulation in

Fig. 3.
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exceeds the resistive layer width L, —(r~/r, ) ' a of
resistive MHD. Namely, the current convective instabil-
ity and associated diff'usion of current are insensitive to
collisions even if collisions play a role in the parallel elec-
tron dynamics on the longer reconnection time scale.
Aydemir has shown that a generic enhancement of elec-
tron viscosity can increase the rate of reconnection in the
resistive limit. '

An important conclusion of the experiments is that the
sawtooth crash times can vary significantly even from
one sawtooth event to the next, while the basic discharge
parameters have hardly changed. ' One possible ex-
planation is that the threshold for the onset of the
current convective instability is sufficiently high that dur-

ing some sawtooth crashes the mode is not excited and
the crash is therefore slow. The threshold for the insta-
bility appears to be easily exceeded for the localized
currents which are produced during recon nection in

high-temperature tokamak discharges. This explanation
for the variability of the crash time therefore does not

appear likely. On the other hand, the crash time remains
quite sensitive to Aq =1 —q(0). Small changes in q
from one sawtooth crash to the next could lead to
significant variation of the crash time, e.g. , for hq =0.01,
z, —400 psec. A definite conclusion on this issue must
await a more complete understanding of the onset of the
sawtooth crash, which may be linked to Aq.

Perhaps a more direct test of our model would be to
investigate whether enhanced density fluctuations with
scale lengths of the order of 6 develop during the saw-
tooth collapse. A more detailed investigation of the non-
linear broadening of the electron current layer is being

undertaken.
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