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Dual Spectra and Mixed Energy Cascade of Turbulence in the Wavelet Representation
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The wavelet-transformed Navier-Stokes equations are used to define quantities such as the transfer
and flux of kinetic energy through position x and scale r. Analysis of pseudospectral direct numerical
simulations of turbulent flows reveals that although the mean spatial values of these quantities agree
with their traditional counterparts in Fourier space, their spatial variability is very large, exhibiting non-
Gaussian statistics. The local flux of energy involving scales smaller than some r also exhibits large spa-
tial intermittency and it is negative quite often, indicative of local inverse cascades.

PACS numbers: 47.25.Cg, 05.40.+j, 05.45.+b

Much has been learned about the physics of tur-
bulence by transforming the velocity and the Navier-
Stokes equations to Fourier space. The velocity field
u (x, t ) is then represented as a linear combination of
physically extended plane waves, characterizing the
motion at diAerent scales. For isotropic and homoge-
neous turbulence, the energetics of turbulence ' is de-
scribed by the three-dimensional energy spectrum E(k,
t ) obeying

where T(k, t) is the net transfer of energy to wave num-
bers of magnitude k. T(k, t) is defined as triple products
of fluctuating velocities and thus embodies the closure
problem resulting from the nonlinearity of the equations.
For the statistically stationary case, the total spectral
Aux of energy through wave number k to a11 smaller
scales is given by

tr(k) =„„, T(k')dk'= — T(k')dk'. (2)

Usually the energy transfer is thought to occur by cre-
ation of small scales through stretching and folding of
vortical elements, which is modeled by simplified pro-
cesses such as the successive breakdown of "eddies" (see,
e.g., Ref. 2). One then argues that through scales of
motion of size k, there is a net Aux of kinetic energy
to sinaller scales, which is equal to n(k). In the inertial
range' one expects this Aux to be equal to the average
rate of dissipation of kinetic energy (e). However, it is
known that in physical space the local rate of dissipation
is distributed very intermittently. This can be modeled
within the framework of breakdown of eddies, but with
the assumption that the Aux of energy to smaller scales
exhibits spatial Auctuations at every scale (see, e.g.,
Refs. 2 and 3). Thus we need to define a Aux of kinetic
energy that, as opposed to Eq. (2), should also depend on
position. In general terms then, it is clear that from
Fourier spectra any information related to position in

physical space is completely hidden, which is a disadvan-
tage when dealing with spatially localized intermittency
in the Aow. On the other hand, without performing
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FIG. l. Example of an orthonormal wavelet Iif(x) (Le-
marie-Meyer-Battle wavelet).

operations involving multiple points, the Navier-Stokes
equations in physical space give no explicit information
about diAerent scales of motion. Such information is
often a useful ingredient for modeling and physical in-
sight. This difficulty calls for a representation that de-
composes the Aow field into contributions of diA'erent

scales as well as diA'erent locations. In other words, we
want to use basis functions that behave more like local-
ized pulses than extended waves. If one wishes them to
be self-similar, one is led to rather special basis func-
tions, called wavelets.

Wavelets have been used in the field of turbulence,
among others, for the study of coherent structures and
of two-dimensional data from a turbulent jet. Such
studies used nonorthogonal wavelets where the transform
typically consists of many more coefficients than the
number of points of the original data set. Recently,
several orthonormal wavelet basis functions have been
constructed, ' and the absence of redundancy of infor-
mation makes this form of wavelets particularly useful in
higher dimensions. In one dimension, orthonormal wave-
lets are of the form
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where m indicates the octave band of the scale parame-
ter, h is the mesh spacing of the basic lattice (smallest
scales), and the index i refers to location in units of 2 h.
Notice that the basis functions corresponding to the
larger scales are spaced more coarsely, according to a
dyadic arrangement on a binary tree structure. Some
particular functions y(x) exhibit the property that
[y (x —2 hi )1 forms an orthonormal base for all
(i,m), as, for instance, the Lemarie-Meyer-Battle
(LMB) wavelet shown in Fig. 1. It is a real function
with exponential decay in x space and k decay in
Fourier space. For more details on this, on discrete
transforms, and on fast algorithms, see Refs. 7 and 8. In
an extension of this formalism to three dimensions, the
velocity field (at some instant t) is written as

7

u (x) —g g g w(m, q)[&]@(m,q)(x 2mh )
m q 1 (ii, i2, i3)

where m denotes again the scale, i=(i(, i2, i3) is the

three-dimensional position index on a cubic lattice of
mesh size 2 h, and q gives additional internal degrees of
freedom (this is needed because +( q) is decomposable
into functions in each Cartesian direction). Because of
orthonormality the discrete wavelet coe%cients can be
computed as

We now start with the Navier-Stokes equations in

physical space written for the Auctuating velocity and
pressure and we take its inner product with W ( q) (x
—2 hi). Multiplication by w; q [i] and contraction
over the three directions i and the index q yields an evo-
lution equation for the local kinetic-energy density
e (m) [i] ~ g (W (m, q) [i]) 2

tl e' '[i] =t' '[i] —v' '[i],
t

where

3 7

t [i]=—g gw; ' [i] ' u. '+ — W ' (x —2 hi)dx
i 1 q 1 8XJ' p Bx('

is the net energy transfer to scale 2 h at location 2 hi.
v [i] is the contribution of the viscous terms, including
molecular diAusion of energy and dissipation at that
scale and location. Equation (6) is the (discrete) analog
of Eq. (1), written for the energy of orthonormal pulses
rather than waves (see also Kraichnan' ). In analogy to
Eq. (2), the Aux of kinetic energy through a spatial re-
gion of characteristic size 2 h and location 2 h i can be
computed by adding the transfer density (local transfer
divided by the total number of grid points at each scale)
over all scales larger than 2 h at that particular loca-
tion:

(m)[. ] g 23(M —n)t (n)[ (8)
n m

Here M is the scale index of the largest scale considered,
and j (given by the integer part of 2 "i) is the position
index of the larger scales (n). Several studies" ' have
used "wave packets" (essentially wavelets) for obtaining
approximations to the Navier-Stokes equations, and have
then deduced energy cascade models. Here we actually
compute these quantities relevant to the energetics of
turbulence, without approximations.

To proceed, we compute the spectral transfer density
at wave number k =2xj2 h by dividing the total
transfer to the band m,

m [i] =23(M —m)(t (m) [i])

by the bandwidth hk =k ln(2) and by the total num-
ber of points 2 . We obtain

T„(k ) =2-'-k-'[in(2)] '(t ™h]), (9)
where the average extends over all points [i]. T„(k ) is
equivalent to the Fourier-transfer spectrum T(k), but is
not necessarily identical at every k because of the width

X ((t (m)[i] 2) (t ( )[ ])2) I/2 (io)
A plot of T (k ) and T„(k ) + cr, (k ) as a function of
k will be called the dual spectrum of transfer, dual be-
cause it gives information both about the contribution of
various scales, and about the spatial variability associat-
ed with it. Similar definitions of dual spectra can be in-
troduced for the kinetic energy and the Aux of energy.

Next we turn to the analysis of three-dimensional tur-
bulent fields. We consider results of pseudospectral di-
rect numerical simulation of homogeneous sheared tur-
bulence on a 128 grid, described in detail in Ref. 14 and
references therein. The snapshot considered is at t =12
in units of the imposed shear, when the Taylor-scale
Reynolds number is about 110. The fIeld is not isotropic,
as elongated vortical structures are visible (isotropic tur-
bulence of lower Reynolds number was also consid-
ered ). We compute the 3D wavelet transform of the
three velocity components, using the LMB wavelet basis.
To compute the local transfer t [i] we need to com-
pute the wavelet transform of the nonlinear terms of the
Navier-Stokes equation (the pressure is computed from
the known fluctuating velocity Geld by solving the Pois-
son equation), and then we apply Eq. (7).

Figure 2 shows the dual transfer spectrum T(k ) and
T(k ) ~a, computed from the homogeneous shear
flow, in Kolmogorov units. The mean transfer (circles)

of the wavelet in Fourier space. One can now inquire
about the spatial variability of t [i], that can be
quantified in terms of its standard deviation [in units of
T(k ) l according to

o((k ) = 2 ™k'[ln(2)]
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FIG. 2. Dual spectrum of transfer of kinetic energy for
homogeneous shear simulation, in Kolmogorov units.

is negative for low wave numbers and positive at high
wave numbers, showing that on the average energy is be-
ing transferred from large to small scales. The solid line
indicates the corresponding radial Fourier-transfer spec-
trum (obtained from the usual Fourier analysis), in rea-
sonable agreement with the mean wavelet transfer.
However, the standard deviation a, is seen to be very
large, implying that locally the transfer of energy is often
quite far from its spectral mean value. This is borne out
even clearer in the probability-density functions of
r [i] of Fig. 3, which are for three scales m =1,2, 3.
Large deviations away from the mean are visible, both
on the positive and negative side. Also, we note the long
tails of the distributions, which are of the exponential
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FIG. 3. Probability-density distribution of transfer of kinet-
ic energy at scales m =1,2, 3.

type.
The quantity t™[i] represents the local transfer

through a certain scale without discriminating between
the other two scales involved in the nonlinear interac-
tions. In order to define a position-dependent flux of ki-
netic energy to all scales smaller than some cutoA band
m which does not include sweeping by the larger scales,
one needs to decompose the nonlinear terms in more de-
tail. By decomposing the velocity into large- and small-
scale components, and considering the small-scale part of
the pressure such that the large-scale part implies a
divergence-free large-scale velocity field, one can show
that

f'" hl = g g w q [i]
i=1 q=l

construct the probability density of this subgrid flux at
every scale. The results are shown in Figs. 4 and 5. We
make the following observations: The mean subgrid flux
is always positive, indicating that on the average, energy
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represents the transfer of energy between scales m and
all scales smaller than n. This quantity is analogous to
the Fourier transfer T(krak„), ' defined as the total con-
tribution to T(k) from triads of wave numbers (k, q,
k —q) having k & k„and at least one of the other two
legs larger than k„. In Fq. (11), the superscripts ) n

( & n) refer to low-pass (high-pass) filtered fields ob-
tained from Eq. (4) by performing the sum over all 2.5

scales m ~ n (m & n) 2.0
A quantity of great practical importance ' is the

eff'ective sink of kinetic energy due to scales of motion
smaller than some cutoA. In the Fourier representation,
this sink of energy is given ' as a flux

pk
n,s(k) = —J, T(k'ik)dk'. (12) +

The analogous definition in the wavelet representation is -1.0
the local flux of energy to smaller scales,

M .0 0 4n(~)[j] = g 23(~ &)r (k ~) [2k ~j] (13) k q
k=m

This quantity is computed from the homogeneous shear
flow simulation, its dual spectrum is obtained, and we

FIG. 4. Dual spectrum of the flux of kinetic energy from in-
teractions with all smaller scales of motion (ilux to or from the
subgrid scales).
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where, from dimensional arguments, the locally averaged
rate of dissipation (always positive) is the quantity
representative of the local inertial-range Aux of energy.
Such a picture must be revised in order to allow for neg-
ative fluxes to occur.
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for very interesting discussions. The financial support
from the Center for Turbulence Research is thankfully
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FIG. 5. Probability-density function of spatial fluctuations
of local subgrid flux of kinetic energy at scales m =1,2, 3.

Aows from large to small scales. There are strong spatial
fluctuations and the statistics of x,g are far from Gauss-
ian, exhibiting very clearly, again, long and exponential
tails. These long tails mean that the flux is very inter-
mittent in space, at every scale of motion. The fluctua-
tions of the subgrid Aux are such that it can be negative
very often (local backscatter). In such locations, energy
actually Aows from the small to the large scales of
motion, i.e., there are local inverse cascades. The tails of
the distributions are nearly symmetric to both sides;
thus, the average being positive comes from a delicate
balance between large positive and not-so-large negative
excursions of localized events. The analysis of isotropic
decaying turbulence yields similar results and the
phenomenon of local backscatter has also been observed
recently during analysis (using low-pass filters) of chan-
nel-flow simulations. ' For a stochastic modeling stra-
tegy and more references, see Leith. '

Although the conclusions have been obtained here for
a low-Reynolds-number Aow where no fully developed
inertial range exists, it seems unlikely that the local
backscatter would disappear at higher Reynolds num-
bers. Many of the phenomenological cascade models of
intermittency work under the assumption of local (in x
and k space) energy transfer from large to small scales,
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