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Quantum Extension of Child-Langmuir Law
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Using a simple mean-field model of the electron-electron interaction, we have studied the effect of
space charge in a planar diode. Our results show, in particular, that the classical value for the limiting
current in such a diode can be exceeded by a large factor due to the effect of tunneling. The smooth
transition of the solutions from the quantum to the classical (nonquantum) regime is demonstrated.
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in the gap region, defined to be 0 (x & D.
Implicit in Eqs. (1) and (2) are the following assump-

tions: (a) The usual Schrodinger wave function y(x) is
interpreted as the density of a continuum electron fluid,
the macroscopic number density being n =yy*. (b) The

The Child-Langmuir law' gives the maximum electron
current that can be transmitted across a parallel, planar
gap in terms of the incident energy of the electrons and
the gap bias voltage. This maximum value, known as the
limiting current, arises because the space charge in the
diode presents a potential barrier to the incident elec-
trons. While there are modifications due to geometrical
and relativistic effects, the limiting current remains a
fundamental quantity characterizing the beam-gap in-
teraction.

In the emerging fields of nanoelectronics, tunneling
microscopy, and vacuum microelectronics, diode gaps
and junctions with scales down to tens of angstroms are
being considered. On such a microscopic scale, quantum
effects may no longer be neglected. Several questions
then arise: Is there a limit on the current that can be
transmitted across the gap when quantum effects are
taken into account? Is the transmitted current quan-
tized? How is the classical value recovered, in conformi-

ty with the correspondence principle? This paper ad-
dresses these questions.

Here, we extend the classical work of Child and Lang-
muir to the quantum regime by considering a parallel,
planar gap. We will use the familiar mean-field theory
expressed bv the self-consistent, coupled Schrodinger
and Poisson equations in the Hartree approximation.
Similar approaches have been taken, for example, to
study the effects of space charge on the device charac-
teristics of superlattice structures. Thus, we solve the
one-dimensional Schrodinger equation (in standard nota-
tion, with e )0)

6 d y —eVy=Ey
d

and the Poisson equation

electrostatic potential V(x) is time independent, thus al-
lowing the separation of the temporal dependence in the
form y(x)e ' '~". (c) All electrons are nonrelativistic,
and they enter the gap at x =0 with the same kinetic en-
ergy. (d) The electron density in the gap is sufficiently
small that single-particle wave functions do not overlap
significantly. (e) Any one electron sees an average elec-
tric field due to all others present in the gap. Thus, what
we are considering is a situation where the electron den-
sity in the gap is sufficiently high that the self-fields of
the electrons are no longer negligible, but is low enough
that we may omit consideration of the exclusion princi-
ple. If the average number of electrons becomes too low,
large fluctuations in both the current and the self-
potential will occur, and the quantum correction calcu-
lated in this paper should then be viewed only as a first
approximation. Fluctuations are not calculated in this
paper.

The boundary conditions to Eqs. (1) and (2) are for-
mulated as follows. Let Vg be the gap bias voltage,
which may be zero, positive, or negative. Then V(0) =0
and V(D) =V~. The boundary conditions on the wave
function y are derived from the conditions that y be
matched, at x =0, to the sum of an incident plane wave

y; (x) =Re' ' and a refiected plane wave y„(x) =B
Ek)xx e ' and, at x =D, to a transmit ted plane wave

y, (x) =Ce ' . Here, A, B, and C are constants and k~
=(2mE/h )', k2 =[2m(E+eVg)/6 ] ' . Charge
conservation requires that the current density J=e(i@/
2m)(yy*' —y*y') be constant for all x. Here, a prime
denotes a derivative with respect to x. In terms of the
wave amplitudes,

J= («/m) k21 Cl' = («/m) k 1 (I& l' —IBP)

In keeping with the classical theory, we shall assume that
E and Vg are given, with E+eVg & 0. We shall deter-
mine the conditions on J for the existence of solutions to
Eqs. (1) and (2).

To see clearly the transition from the classical to the
quantum regime, we find it convenient to use nondimen-
sional quantities: x =x/D, V=eV/E, E =E/eV„J =J/
J„n=n/n, =

l yl /n„and Pg =eVg/E, where the voltage
scale V, =6 /2emD, the current-density scale J,
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=cot't /4m eD, and the number-density scale n,
=co@ /2e mD . With the voltage scale V, so defined,
E is simply the ratio of the gap width to the electron
wavelength, and E» 1 is the classical limit.

We next represent the wave function

y(x) =(nE )' 'p(x)e'" '

in terms of the nondimensional amplitude p(x) and
phase 8(x), both assumed real. Equations (1) and (2)
yield the following coupled equations for p(x) and V(x):
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where we have introduced the dimensionless "perveance" 0.1
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which is proportional to the current. Note that A, is a
classical quantity, as it depends only on J, E, and D, but
not on A. In terms of ), the phase 8(x) is given by

FIG. 1. The solid curves show the normalized critical
current (kq) as a function of E for ps =0, +' —,

' . The classical
values (k, ) are indicated by the dashed lines.

8(x) =(X/4)E'~' dx/p'(x), ()
where, without loss of generality, we have assigned
8(1)=0. The boundary conditions to Eqs. (3) and (4)
are

v(o) =o,
v(1) =y, ,

p(1) =(X/4) '"/(I+y, ) '",
p'(1) =o.

(7)

(lo)
It can easily be shown that the classical limit is ob-

tained by simply ignoring the first term p"/E in Eq. (3)
and that the quantum behavior enters only through that
term. The classical behavior dominates when E»1, and
the transition to the quantum regime is expected to occur
when E =O(1). Thus, in the classical limit (E ~),
Eq. (3) gives

4 (1+v) '" (11)

which, when cast back in dimensional form, is simply the
statement of energy conservation in the classical descrip-
tion of electron motion. Indeed, the Child-Langmuir law
may be recovered by substituting Eq. (11) into Eq. (4).
The resultant second-order differential equation in V,
subject to boundary conditions (7) and (8), may be
shown to admit no solution whenever A, & A.„where

(12)

This is essentially the Child-Langmuir law' in normal-
ized form. It gives the maximum current that can be

transmitted, in steady state, in terms of the injection en-

ergy E and the gap bias voltage Vg. Note that k, is in-
dependent of E (Fig. 1).

Retaining the p" term in Eq. (3), our problem be-
comes, for specified E and ps, for what values of A, do
Eqs. (3) and (4) have solutions, subject to Eqs. (7)-
(10). We have obtained numerical solutions for a wide
range of values of E and pg. In particular, we have
found that there is a critical value of A, , called kq, above
which no solution exists. According to this formulation,
Xq represents the maximum current that can reach x = 1,
independent of the nature of the emitter at x =0, since
the boundary conditions (9) and (10) specify only the
transmitted flux at x =1.

Our results are summarized in Fig. 1, which shows Xq
as a function of E for different values of ps. The classi-
cal value, from Eq. (12), is also shown. Note that the
classical value is indeed approached for large values of E
while, for small values of E kq greatly exceeds the clas-
sical value. We attribute this finding to the tunneling of
electrons through the potential barrier presented by the
average space-charge field of other particles in the gap.
In fact, using the numerically computed potential barrier
( —V) (Fig. 2), we have found that the WKBJ estimates
on the tunneling across such a barrier are consistent with
the transmission coefficient that was computed numeri-
cally (Fig. 3). For small E, Fig. 1 suggests kq cc 1/E.

The transmittable current is not quantized in the
above formulation. For all A, &kq, solutions to Eqs. (3)
and (4) subject to (7)-(10) can always be found. Fig-
ure 2 shows a sample solution. From the numerical solu-
tions, we may construct a refiection coefficient C~ =—)y„/
y;P and a transmission coefficient CT =—(kq/k~) ~y, /y;~
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FIG. 2. The solutions p, 0, and V for the case E =1, X =95,
and ps =0.5. Tunneling effects are apparent as 1+V(0 (i.e.,
E+eV (0) over a wide range of x.

FIG. 3. The transmission coefficient CT as a function of X

for E =1, &g=0.5. The values of A,~ and k, are indicated by
the dashed lines.

relative to the incident Ilux (current). Clearly, Ctt
+CT=1. The transmission coe%cient is shown in Fig.
3.

As an example, take D =30 A; then V, =4.24 mV,
n, =2.6X10' cm, and J, =8.06 kA/cm . Further, if
we take E =1 and ps=0. 5, then Fig. 1 gives X~ =102,
whereas the classical theory Eq. (12) gives ), =19.6.
This value of kq means that the maximum current densi-
ty that can be transmitted across such a gap is 4.11 x10
A/cm from the quantum-mechanical theory. On the
other hand, according to the classical theory, the max-
imum current density would only be 7.89X 10 A/cm, a
factor of 5 lower. The solutions for this example with
k =95 are shown in Fig. 2, from which we can obtain the
average electron density (n) and the spatial scale L over
which the wave function varies. One can readily deduct
that (n)'/ L & 1. Thus, the electron density is suffi-

ciently low to ignore the exclusion principle.
In summary, self-consistent solutions to Eqs. (1) and

(2) have been constructed. From these solutions, we
have found that the macroscopic current that can be
transmitted across a gap can exceed the classical value of
Child and Langmuir, sometimes by a large amount, be-
cause of tunneling eAects. Dimensionless parameters
have been identified through which the transition from
the quantum regime to the classical regime may be as-
sessed.
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4The other scales, n, and J„may be deduced as follows. As-
sociated with the gap width D is a characteristic wave number
k, =1/D, from which we may construct a velocity scale
v, =hk, /m =h, /rnD and a frequency scale co, =v, /D =It/mD2.
If we identify co, as the scale for the plasma frequency
(e2n, /ms0) 't2, we obtain the number-density scale n„and the
current-density scale J, =en, v„apart from the numerical
coefficients of order unity. Thus, n, is the electron number
density above which the electrostatic energy may no longer be
ignored, J, is the classical space-charge-limited current density
when the applied voltage is of order V„and e V, is the
minimum kinetic energy of a particle localized to D, as re-
quired by the uncertainty principle.

INumerically, we integrate Eqs. (3) and (4) backward, from
x=1 to x=0. The boundary conditions (7) and (8) specify
the potential imposed on the gap, whereas (9) and (10) follow
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from the requirement that the solution at x =1 matches a
(preassigned) transmitted wave y&(x). To integrate (3) and
(4), we use (8)-(10) and, in addition, assume a value for V'(1)
as initial conditions at x =1. The value V'(1) is adjusted so
that condition (7) is satisfied, after integrating (3) and (4)
back to x =0. The incident-wave and the reflected-wave am-
plitudes can then be inferred from the numerical solutions.

sFor A, (X~, we find two solutions of Eqs. (3) and (4) satis-
fying (7)-(10), for specified values of E, pg, and A, . For vari-
ous reasons, we argue that the one with higher potential energy
is inaccessible. In this paper, we focus only on the solutions
with lower potential energy. When A. =A,q, the two solutions

merge. These properties are also shared by the classical
theory.

7The present paper essentially treats a nonlinear scattering
problem of beam injection into a gap by an external source. It
is conceivable that a diAerent physical situation would require
different boundary conditions on y at x =0 that would lead to
the interesting possibility of quantization of both E and k. The
existence of such states, and their stability, will be the subjects
of a future publication. We should add, however, that regard-
less of the boundary conditions on y that would be imposed at
x =0, the normalized critical current kq calculated in this pa-
per is still the upper limit.


