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A new approach for the study of ground states of many-electron systems is developed via direct calcu-
lation of the density in density-functional theory. Not using the Kohn-Sham equations, the method
divides a system into subsystems in physical space and determines the density for each subsystem. The
method is demonstrated with calculations for the nitrogen molecule, which is divided into two atomic
subsystems. We expect this approach to enable calculations for large molecules beyond the reach of con-

ventional methods.

PACS numbers: 31.15.+q, 31.10.+z, 71.10.+x, 71.45.—d

Density-functional theory (DFT) plays a role of in-
creasing importance in the calculations of ground states
of molecules and solids.'”> Most of the contemporary
DFT calculations are based on the Kohn-Sham (KS) for-
mulation.® In spite of its success, however, the applica-
tion of the KS approach is limited in the size of mole-
cules. For a molecule with IV electrons, the KS approach
requires /V/2 orbitals (for closed-shell molecules) to rep-
resent the electron density, and the computational effort
scales as V3. This cubic scaling is the bottleneck for the
application of DFT to large molecules.

We intend here to explore further the fundamental
principle of DFT— the use of the electron density as the
basic variable to describe the ground state of a many-
electron system. The Thomas-Fermi (TF) and related
theories were the original attempts in using the electron
density as the basic variable, '3 based on the approxima-
tion for the kinetic-energy functional. The idea is indeed
very appealing—the computational effort of such an ap-
proach would scale linearly as the size of the molecule.
The accuracy of the approximate kinetic-energy func-
tionals, however, is too poor to commend the TF-type
theory as a quantitative theory of electronic structure.
The recent integral formulation of KS theory in principle
makes possible the systematic improvement of the TF ap-
proach,”® but the complexity of many-dimensional in-
tegrations in the formulation still defies practical appli-
cation.

In this Letter, we present a new method for the direct
calculation of the electron density and its total energy.
The method does not solve the KS equations nor is it
based on an approximate kinetic-energy functional.
Consider a system of N electrons in an external field
v(r). In terms of the electron density p(r), the total en-
ergy can be written as'>

Elp] =Tulpl+ [ o (®p@)dr+Eyclpl
+1 [ pple) ) jear+y Ze%e )
2 |1'_'l'| a,b ab

where T;lpl is the kinetic energy of a noninteracting
electron gas in its ground state with density p, Ex.[p] is

the exchange-correlation energy, and the last term is the
electrostatic energy of the nuclei. The minimization of
the energy functional E[p] with respect to the electron
density is then accomplished if the KS equation is
satisfied,

Hy: () =[— + V2+ V(@) y;(r) =5y, (r) )

and the density is given by

N/2
p(r)=22 vi@ (@), 3)
where Veq(r) is the KS effective local potential,

Ve =v o)+ [ ar v o), @
lr—r'|

with Vy(r) =8E,.[pl/6p(r). The total energy, Eq. (1),

can also be expressed in terms of the KS eigenvalues: '~

N/2
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where  Qlpl=fpl—0¢(r)/2 =V, (t)ldr+E[pl, and
¢(r) is the electrostatic potential due to the electrons,
which is the second term on the right-hand side of Eq.
4).

The foregoing is the conventional KS formulation.
Our goal here is to bypass the KS equation (2) and to
compute the electron density directly without using the
N/2 orbitals as in Eq. (3). Rewrite Eq. (3) as'™

p(r) =2(r|n(er —H)|r), 6)

where n(x) is the Heaviside step_function [n(x)=1 for
x>0, and n(x) =0 for x <0], H is the KS Hamiltoni-
an, and &r can be any value between the highest occu-
pied and the lowest unoccupied eigenvalues. Now divide
the system into subsystems in the physical space by the
following smooth partition 1 =%,p*(r), where p°(r) is a
positive weighting function for the subsystem a. p(r) is
large in the subspace where the subsystem a is and is
small away from it. Then the total density can be exact-
ly expressed as the sum

p(r) =23 p*(e)r|nler —H) 1) =2 p°(r), @)
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where p°(r) =2p°(r){r|n(er — H)|r).

To use the above equation to calculate the electron
density, we have to approximate the KS Hamiltonian.
Projection of H to the space spanned by the linear com-
bination of atomic orbitals (LCAO) is a global approxi-
mation to H, leading to the usual LCAO approach for
the KS equations. We want something different here.
The smooth partition of density in Eq. (7) allows a local
approximation to H; namely, we can make different ap-
proximations to H for different subsystems. Thus, we in-
troduce the following approximation for p*(r):

5°(x) =2p°(r)r|fs(er —H) |1, )

where fp(x) is the Fermi function, fs(x)=I1
+exp(—px)]1 ™", and H® is the subspace approximation
of the KS Hamiltonian operator. The Fermi function in
Eq. (8) is a convenient choice to make the value of &f
unique; the uniqueness of gr is necessary as will be
shown below.

We now let H® be the projection of the original KS
Hamiltonian operator H to the space spanned by the
nonorthogonal basis functions {¢7(r)} that are localized
in the subsystem a:

H=§, lo@ (S jx ' (H) 1 (S%) im (o |
Jkim
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where (S?) %! is the (j,k) element of the inverse matrix
of the overlap matrix S and (H%)y the (k,/) element
of the Hamiltonian matrix H?, with

($2);;=(oflop, (H*);=(of|H|o% . (10)

In Eq. (9), the first equality is a standard projection,
while the second expresses the projected Hamiltonian H*®
in terms of its eigenvalues {7} and eigenfunctions {yf}.
The eigenfunctions {y#} are obtained as the linear com-
binations of the basis functions {9},

yr(D) =2 Cliof (), (11)
J

where the linear coefficients are the solutions of the fol-
lowing generalized eigenvalue equation derived from the
Rayleigh-Ritz variational principle:

(H®—¢fS?)Cf=0, (12)

where the matrices involved are given in Eq. (10). With
{w?, e given by Egs. (11) and (12), one can easily veri-
fy the equivalence of the two expressions for H® in Eq.
9.

Using the spectral resolution of H® in Eq. (9), we can
evaluate the subspace density p* by Eq. (8). Then by
Eq. (7), we obtain the expression for the direct calcula-
tion of the total electron density

5(r)-ZZp“(r)pr(s:p—s{‘)lw,”(r)lz, 13)

where the value of & is determined by the normalization
constraint

N=fﬁ(r)dr=2ZZf,g(sp—s,”)(w,”lp”lw}’). (14)

To guarantee a unique solution of & for a given N, it is
necessary to keep a finite 8 so that the right-hand side of
Eq. (14) is a continuous monotonic function of &r. The
value of B can be chosen such that its increase does not
significantly change the total energy.

We also need to determine the eigenvalue summation
in the expression for total energy, Eq. (5); namely,

N/2 ) X
6’=2Z 8[=2fdl'(l'|H7](8p_H)|l'>. (15)

Now make an approximation to Eq. (15) in a similar
fashion as in Eq. (8), namely,

6=2f arT pe @) el A*fyler — A
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which leads to the approximate total energy

E=<§+Q[ﬁ]+z[:,ZaZ,,/Rab, 17)

where QI[35] can be evaluated by three-dimensional in-
tegrations.

To summarize, the procedure to calculate 5(r) from a
given Vq(r) is as follows: (i) Choose a partition func-
tion p*(r) and a localized basis set {¢/} for each subsys-
tem a; (ii) for each a, calculate the matrices S® and H®
of Eq. (10) and then solve Eq. (12), which gives {y?,&%;
(iii) determine &r by solving Eq. (14) and then 5(r) by
Eq. (13). This procedure is coupled with Eq. (4) to
achieve self-consistency. Finally, the total energy is
given by Eq. (17). The new method has the following
features.

(A) We employ a divide-and-conquer strategy. Not
attempting the global approximation of the V/2 KS or-
bitals, we divide the electron density into contributions
from subsystems using partition functions p®(r) via Eq.
(7), and then determine each contribution using local
basis functions {¢/ via Eq. (8). It is conceptually ap-
pealing that the determination of the structure of a mole-
cule can be based on its division into its constituent
atoms, or chemical bonds, or functional groups, or frag-
ments (examples of suitable partition functions will be
given below). Computationally, the advantage of this
approach is obvious: No construction nor diagonaliza-
tion of the global Hamiltonian matrix is needed. In-
stead, diagonalization of the KS Hamiltonian for each
subsystem as described in Eq. (12) can be carried out
separately and concurrently, which is ideal for parallel
processors. The coupling between each subsystem is
minimal—only through the local potential and the value
of er.
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(B) The KS theory is a limit of the present theory: In
Eq. (8), if we let B— oo and let H® be the same for all
the subsystems, the usual LCAO KS Hamiltonian, for
example, then the theory becomes the KS theory, in-
dependent of the choice of partition functions. This tells
us that the localized basis set {¢f} for each a subsystem
should at its (impractical) limit approach a complete set
for the present theory to approach the KS theory. The
partition functions should be designed to make Eq. (13)
an accurate approximation to the density without going
to this limit. Our numerical calculations below show our
attempt in such design and its encouraging results.

The TF theory is another limit. Let the subsystem be
points ro, p°(r) =6(r—r,), and the summation over a
become integration. Then represent the H®, the Hamil-
tonian at point r,, by the local constant-potential approx-
imation: H®=— +V2+V4(r,). The eigenstates of
such H® are plane waves and the present approach is re-
duced to the TF theory. This analysis puts the present
method in a clear prospect: It presents a full spectrum of
intermediate partitions of the systems between the global
KS and the extremely local TF approaches. We also see
that straightforward improvements of the TF theory
would be to retain the point partition but to assume lo-
cally linear or quadratic approximations to H® The
eigenstates of the three-dimensional linear and quadratic
potentials are known and can be easily used in Egs.
(13)-(16). ,

(C) The present approximation for the KS eigenvalue
sum & can be used in the non-self-consistent calculations
proposed by Harris.” The resulting algorithm does not
need the calculation of molecular density nor the global
diagonalization of the KS Hamiltonian.

(D) Extension to the spin-polarized version of the
theory is straightforward: Eqs. (13)-(16) apply to the
corresponding spin components without the factor 2. Ex-
tension to describe fermions at finite temperature can
also be made:* Let 1/B be the temperature, &r the
chemical potential, and E. the exchange-correlation
contribution to the free energy. Then the self-consistent
solution gives the equilibrium fermion density. The ap-
proximation of Eq. (15) by Eq. (16) can be generalized
to other properties, including the entropy:3 That is,

TrigN=Y [ drpe)elg (A0, (18)

where g(x) is a general function.

(E) The present method, similar to the TF-type theory
and unlike the conventional LCAO KS method, guaran-
tees neither upper nor lower bound to the exact Kohn-
Sham energy for a given Exlpl. But, a complete basis
set (the same for all subsystems) used in the new method
would produce the corresponding exact KS energy. The
accuracy of the method is enhanced with the use of
better basis functions, as will be shown in the example
below.
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We now demonstrate the proposed method with self-
consistent calculations for the nitrogen diatomic system
which we divide into two atomic subsystems. This is a
simple yet very severe test, for the two subsystems are
connected by a strong chemical bond.

To ensure the proper normalization, the partition
function can conveniently take the form p°(r) =g%(r)/
2.8°(r). We choose for the atomic subsystems g®(r)
=[p§(|r —R,|)1%, where p§ is the spherical atomic elec-
tron density for the atom at R,. This is one of the forms
of partition function used in multicenter three-
dimensional integration for the LCAO KS approach.'®
The inverse temperature is set at =50 a.u., which cor-
responds to a temperature of 6300 K. The localized
basis functions {¢f} are taken to be Slater-type atomic
basis functions. Three sets of basis functions are used:
single zeta, double zeta, and polarization, denoted by
SZ, DZ, and P, respectively. The first two are from the
Clementi-Roetti tables,!! and one 3d and one 4f func-
tion are added to the quadruple zeta basis functions of
the Clementi-Roetti table to form the polarization basis
set. The exponents for the 3d and 4f functions are 2.5
and 2.0 for the nitrogen atom; their choice has been
guided by that of McLean and Yoshimine. '2

Other technical details are that all the multicenter
three-dimensional integrations are carried out by the
partition method of Delley,'® with a scaled generalized
Gauss-Laguerre quadrature rule for the radial coordi-
nates;'? the value of &f is obtained by a bisection method
for solving Eq. (14); the electrostatic potential is calcu-
lated by the partition method of Delley;'® the exchange-
correlation energy functional used is the Xa approxima-
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FIG. 1. Comparison of energies for N, between self-

consistent calculations by the LCAO Kohn-Sham method
(dashed lines) and by the present method (solid lines). The
curves for both methods, from top to bottom, are, respectively,
the results of SZ, DZ, and P basis sets.
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TABLE I. Comparison of minimum energies (Eo) and bond lengths (r¢), in a.u., for N, mol-
ecule between LCAO Kohn-Sham approach and present work (PW), with three basis sets.

P DZ Sz
(LCAO) Prw) (LCAO) PW) (LCAO) PW)
Eo —108.343 —108.400 —108.254 —108.153 —107.882 —107.940
ro 2.075 2.069 2.136 2.215 2.288 1.940

tion, Exclpl = — 5 a(3/m) 3 fp* dr, with a =0.7.

With the foregoing specification, we have carried out
self-consistent calculations by the present method and
also by the conventional LCAO Kohn-Sham method for
comparison. Total energies versus bond lengths for the
three basis sets are plotted in Fig. 1. The calculated
minimum energies and equilibrium bond lengths are
summarized in Table I. We note the following: (i) The
present theory is capable of describing chemical bond
formation; (ii) the accuracy of the present theory im-
proves with the quality of the basis set; (iii) increasing f8
from 50 to 100 a.u. only changes the total energy at
third or fourth digit after the decimal point. These cal-
culations show the promise of the present theory. Its ac-
curacy is much beyond the TF-type approaches.

The present theory allows a full spectrum of partitions
of a molecule into subsystems. We expect its accuracy
to increase with the size of subsystems. For subsystems
more complex than atoms, the partition functions can be
constructed by adding the partition functions of its con-
stituent atoms, and the localized basis set can include
atomic basis functions from its constituent atoms (and
also from nearby atoms to accelerate convergence). The
partition need not be exclusive—an atom may belong to
more than one subsystem; for example, we can divide a
molecule into all the bonded pairs of atoms. Whatever
partition it may be, we hope that the present approach
will enable the application of density-functional theory to
large and complex molecules beyond the conventional
approach.

Acknowledgment is made to the donors of the Petrole-

um Research Fund, administrated by the American
Chemical Society, for the partial support of this
research. The author is grateful to the North Carolina
Board of Science and Technology for the 1990 Science
and Engineering Development Award, and to the North
Carolina Supercomputer Center for CPU time.

ITheory of the Inhomogeneous Electron Gas, edited by S.
Lundquist and N. H. March (Plenum, New York, 1983).

2The Single-Particle Density in Physics and Chemistry,
edited by N. H. March and B. M. Deb (Academic, New York,
1987).

3R. G. Parr and W. Yang, Density-Functional Theory of
Atoms and Molecules (Oxford Univ. Press, New York, 1989).

4M. Levy and J. Perdew, in Density Functional Methods in
Physics, edited by R. H. Dreizler and J. da Providencia (Ple-
num, New York, 1985).

SR. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689
(1989).

6W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

W. Yang, Phys. Rev. Lett. 59, 1569 (1987); Phys. Rev. A
38, 5494 (1988).

8R. A. Harris and L. R. Pratt, J. Chem. Phys. 82, 856
(1985).

9). Harris, Phys. Rev. B 31, 1770 (1985).

10B, Delley, J. Chem. Phys. 92, 508 (1990).

IIE. Clementi and C. Roetti, At. Data Nucl. Data Tables 14,
177 (1974).

12A. D. McLean and M. Yoshimine, “Tables of Linear Mole-
cule Wavefunctions,” IBM Corporation, 1967 (unpublished).

13W. Yang, J. Chem. Phys. (to be published).

1441



