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Positive-Energy Spectrum of the Hydrogen Atom in a Magnetic Field

D. Delande, A. Bommier, and J. C. Gay

Laboratoire de Spectroscopie Hertzienne de I’Ecole Normale Supérieure, 4, place Jussieu,
Tour 12-E1, 75252 Paris CEDEX 05, France
(Received 31 October 1990)

The positive-energy spectrum of the hydrogen atom in a magnetic field is deduced by making use of
the complex-rotation method combined with Sturmian-type expansions. This yields the energies and
widths of the resonances especially for fields of atomic interest. Accidental destructive interference gen-
erates ultranarrow resonances above the ionization threshold as experimentally observed.

PACS numbers: 32.60.+i, 05.45.+b, 31.50.+w

The hydrogen atom in a magnetic field has become
recognized as a prototype for the study of nonintegrabili-
ty in a system which is experimentally accessible. The
problem has attracted considerable attention with re-
spect to the study of quantum manifestations of classical
chaos.!

High-quality experimental results on hydrogen? and
alkali-metal atoms?® have stimulated the theoretical
analysis of the bound discrete spectrum, yielding accu-
rate predictions of the positions and intensities of the
lines and revealing numerous features that are charac-
teristic of nonintegrability in the structure of the eigen-
states.* Recent experimental investigations of the
positive-energy spectrum of lithium with 30-MHz resolu-
tion have revealed new phenomena® which dramatically
demonstrate that the positive-energy limit of the system
is not yet understood. This Letter presents the first nu-
merical simulations of the positive-energy spectrum that
can yield accurate results at laboratory field strengths
(B=6 T), allowing us to interpret some of the experi-
mental findings.

The Hamiltonian of the atom in a magnetic field
(along the z axis) is (atomic units)
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I., the z component of the angular momentum, is a con-
stant and y=B/B, (B, =2.35%10° T). The proton mass
is assumed infinite.

Asymptotically, the Hamiltonian (1) tends to the Lan-
dau Hamiltonian with ionization thresholds:

En=WN+1)y, (©))

where NV is a non-negative integer that labels the Landau
levels. The Coulomb potential induces a coupling be-
tween the Landau channels. At high fields (y>> 1), adia-
batic separation of the slow motion along B yields the
picture of an infinite set of Landau thresholds each sup-
porting a quasi-one-dimensional Rydberg progression.
Because of the coupling with the continua of the lower
Landau levels, all these series, except for the lowest one
which is discrete, are composed of resonances with

nonzero autoionizing widths. At lower fields (y <1),
such an adiabatic separation cannot be expected to ap-
ply.

As noted by a number of authors,’”’ the complex-
coordinate method is well suited for analyzing such a
situation. This amounts to making the replacements r
— re’®, p— pe ~" in the Hamiltonian (1), yielding
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The rotated Hamiltonian H(8) (0< 6 =< § ) is non-
Hermitian with a complex spectrum characterized by the
following key properties (mathematical proofs can be
found in Refs. 5-7), with reference to H =H(6=0): (i)
The continua are rotated by the angle 20 into the lower
half plane around their branch points (the Landau
thresholds); (ii) the bound (discrete) spectra of H(8)
and H coincide below the first Landau threshold; (iii)
The resonances of H coincide with the complex eigenval-
ues of H(8). The real part (the energy) and the imagi-
nary part (negative of the half-width) are 6 independent
provided that the rotation of the continua has uncovered
the resonances.

Another key property in the method is that the resol-
vent operator of H can be expanded onto eigenstates of
the rotated Hamiltonian in a finite region near the nu-
cleus. Although this seems like a straightforward use of
analyticity properties, the nonunitary character of the
complex dilatation causes H(8) to be non-Hermitian,
giving this expansion an unusual character. In a basis of
real functions, the matrix of H(8) is complex symmetri-
cal, and the eigenvectors |¢;(8)) are nonorthogonal. The
left eigenvectors |¢;(6))7 are the transposed values of
|¢;(6)), not the Hermitian conjugates, and they are nor-
malized so that |¢;(8))7|¢;(8))=4;;. This leads to the
biorthogonal spectral expansion:>

H(0) =2 E(8)|e;(8))]e;(6))7, @)
i
where the sum is over all discrete and continuous states,

and E;(0) are the eigenvalues of H(8).
The cross section for photoionization o(w) from the
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discrete state |wo) with energy E is given by’

L —T|wo), (5)

drw
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where T =e-r is the dipole operator for polarization e.
The matrix element can be reexpressed as {|y)T[H(9)
—w—El _]Iy/>} by introducing the complex rotation.”
Here |y) is the complex-rotation transform of 7|y,
which we can further expand on the eigenvectors of
H () as X¢;(8)|¢;(6)). Finally,

_4nw c(6)
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(6)

The photoionization cross section is now the sum of
well isolated contributions arising from the eigenspec-
trum of the rotated Hamiltonian; it is free from the
divergences in Eq. (5). An isolated resonance leads to a
Beutler-Fano profile whose detailed shape depends on
arge;

A Sturmian basis® is well suited to diagonalizing the
rotated Hamiltonian. Such a complete and discrete basis
complies with the dynamical group SO(4,2) of the hy-
drogen atom® and its oscillator representation (whose
eigenbasis is precisely a Sturmian basis). The matrix
elements have a known analytical form. As a result of
selection rules, the complex symmetrical matrix of H(8)
is banded with few nonzero elements. Studies of the
bound spectrum'® have revealed the outstanding effi-
ciency of the method. Its natural extension to the
positive-energy spectrum again leads to a generalized ei-
genvalue problem, but for a complex symmetrical band-
ed matrix. Here, the diagonalization of H(6) has been
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FIG. 1. Spectrum of the rotated Hamiltonian H(8) [Eq.
(3)] obtained from the Hamiltonian of the hydrogen atom in a
magnetic field [Eq. (1)] through a dilatation transformation
r— re'®. The continua rotate around the Landau thresholds,
exposing the resonances (crosses) as complex eigenvalues.
H(0) is truncated and diagonalized in a finite basis, and the
continua appear as sets of discrete eigenvalues lying approxi-
mately on straight lines (diagonalization of a 10000 x 10000
complex symmetrical matrix: y=0.1; /. =0, odd-parity spec-
trum; 6=0.1.) The arrows indicate the successive Landau
thresholds [Eq. (2)].

Im(Energy) (atomic unit)

142

performed using a stable implementation of the Lanczos
algorithm. '°

Figure 1 displays the complex energy spectrum of
H(0) for y=0.1. The field, 2.35%10* T, is too high to
be realized in the laboratory, but the calculation allows
us to check our results against previous work.'""!? As ex-
pected, the spectrum is composed of resonances whose
positions are independent of 6 and of continua rotated by
—26 around the Landau thresholds. The associated
photoionization spectrum from the ground state is shown
in Fig. 2. Two quasi-1D Rydberg progressions leading to
Fano-shaped profiles and converging to the second and
third Landau thresholds are exhibited. Except in the im-
mediate vicinity of the thresholds (see below), these cal-
culations are fully converged. This has been checked by
varying the size of the truncated basis, the angle of rota-
tion 6, and the parameter (the real part of the dilatation)
of the Sturmian basis. An additional “blind” check of
the overall reliability can be obtained by noting that be-
tween the first and the second Landau thresholds, there
is only one open channel for ionization. This implies that
destructive interference between neighboring resonances
should cause exact cancellation of the cross section for
some energies. Our fully converged numerical calcula-
tions agree well with these predictions, while noncon-
verged calculations could lead incorrectly to negative
cross sections.

A drawback to our method comes from the unavoid-
able truncation of the Sturmian basis. This manifests it-
self in Fig. 1 in the rotated continua appearing as sets of
discrete eigenvalues lying approximately on straight
lines. Provided the energy spacing between two consecu-
tive members of the set is smaller than their widths, this
will have no consequence on the photoionization cross
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FIG. 2. Numerical simulation of the photoionization cross
section of the hydrogen atom in a magnetic field (y=0.1;
/- =0, odd-parity series; ionization from the ground state with
a laser polarization along the magnetic field). The Rydberg
series converging to the Landau thresholds are clearly visible.
Note the null values of the cross section below the second Lan-
dau level and the Fano-shaped profiles (the data are those of
Fig. 1).
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section and linewidths of the resonances. Overlapping of
the various contributions will simulate a real continuum.
This fails only in the vicinity close to the Landau thresh-
olds where the imaginary parts are small, but the repro-
duction of the infinite number of oscillations of a Ryd-
berg series at threshold is obviously impossible using a
finite basis.'"'?

The method, in contrast to previous ones, can be ex-
tended to lower fields (that are experimentally relevant),
where the adiabatic approach becomes poor due to the
strong interactions between the 1D Rydberg series.
Here, the Rydberg series cannot be identified except in
some narrow windows (see Ref. 3 and the following
Letter'?). By increasing the sizes of the basis to 62500,
the positions and widths of the resonances at B=6 T are
usually reproduced to high accuracy, =5x107"'0 a.u.
Gi.e., 10 "% cm "), which is 1 order of magnitude better
than the experimental results available.® However, for a
few broad resonances, the uncertainty on the position
can be slightly larger, of the order of 10 "3 cm ~'. The
mean spacing between two consecutive resonances is of
the order of 4x10 72 cm ~'. Spurious shifts in the ion-
ization thresholds and questions of convergence in their
vicinity can be investigated and controlled by locally
changing the size and parameter of the basis.

Figure 3 displays the photoionization spectrum from
the 3s state between +6 and +8 cm ™' at y=2.595
x10 73 (B=6.10 T), which looks similar to the experi-
mental spectrum of lithium? (a detailed comparison is
performed in the following Letter!?). Broad resonances
(width =10"" cm ") coexist with narrow ones, for ex-
ample, of a width 8x10~* and 1.4%x10™% cm ™! near
E=46.40 cm ~'. Upon small changes of y, the narrow
lines broaden while others become narrower. This agrees
with the experimental observations of lithium.3

Sharp levels at positive energy occur because of the in-
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FIG. 3. Numerical simulation of the photoionization cross
section from the 3s state in a field of 6.10 T (y=2.595x10~5).
Two very narrow lines between +6 and +8 cm ~! are visible
near E=+6.4 cm "' (diagonalization of a 62500%62 500 ma-
trix).

teraction of several discrete states (associated with excit-
ed Landau levels) with a single continuum of ionization
(between the first and second Landau thresholds). Each
discrete state is coupled to the continuum by a real ma-
trix element, the square of which is proportional to the
width of the resonance. Upon accidental cancellation of
this matrix element, the discrete state becomes a bound
state embedded in the continuum.'? It is well known
that such a cancellation is likely to take place when two
discrete states interact with each other (anticross) and
with a continuum. For a specific value of y, close to the
anticrossing point, one state is stabilized and becomes a
bound state.'* This is the origin of narrow resonances in
the present spectrum.

Refinements to the previous model would take into ac-
count the chaotic character of the dynamics. This means
that all the discrete states should have complicated an-
ticrossings associated with level repulsion and that the
eigenstates vary rapidly with y. The matrix elements for
ionization should exhibit strong fluctuations and in the
ideal case of a random-matrix-theory model, Gaussian
fluctuations around zero. The most probable width
should then be zero.

Such a stabilization has already been observed numer-
ically at much higher magnetic fields'? (y=1 where the
adiabatic approximation applies) as well as in other
external field situations.'* Above the second Landau
threshold, observing narrow resonances requires that two
real matrix elements be simultaneously small, which is
less probable.

Finally, we note that the periodic-orbit analysis devel-
oped to interpret the bound spectrum! can be extended
to-a continuous spectrum. This is demonstrated in Fig. 4
where Fourier transforms for the bound and positive
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FIG. 4. Squared Fourier transform of the fluctuating part of
the photoionization cross section (Welch windowing) from the
3s state in a field of 6.114 T (y=2.601x10"3): Energy inter-
val [—30 ecm ™'; 0 cm '] (dotted line); energy interval [0
cm ~'; 30 cm '] (solid line). In the two spectra, which are of
very different nature (discrete and continuous), the peaks asso-
ciated with periodic orbits are clearly visible (diagonalization
of a 22500% 22 500 matrix).
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spectrum are compared. They display the same peaking
at periodic orbits.

The method described here provides an important new
tool for the quest to understand nonseparable quantum
systems and the quantum manifestations of classical
chaos.
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