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B =3 Nuclei as Quantized Multi-Skyrmions
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The minimal-energy solution of the SU(2) Skyrme model with baryon number three is a soliton with
tetrahedral symmetry 43m. Given one assumption, I show how this symmetry ensures that the J = —,

' +

isodoublet nucleus ('He, 'H) emerges as the unique ground state of this soliton solution when its isospin
and rotational zero modes are quantized.

PACS numbers: 21.40.+d, 11.10.Lm, 11.40.Fy, 27.10.+h

In the eAective theory of two-flavor strong interactions
given by the SU(2) Skyrme model, ' baryons are de-
scribed as topological solitons —Skyrmions —in the pion
field, where the topologically conserved winding number
8 of the soliton is identified with its baryon number.
The nucleon and h, have been successfully modeled as the
quantum states of the spinning 8=1 soliton solution,
awhile the deuteron emerges as the lowest-energy state of
the quantized 8 =2 toroidal Skyrmion. In this Letter,
I show that it is also possible to account for the isodoub-
let nucleus ( He, H) as the unique ground state of the
quantized 8 =3 multi-Skyrmion.

The fundamental object of the SU(2) Skyrme model is
the SU(2)-valued chiral field U(x), which is related to
the pion fields tr'(x), a =1,2, 3, via

U(x) =exp[2itt'(x) cT,/f 1 .

Here cr, are the Pauli matrices and f is the pion decay
constant. Introducing the left-invariant current L„
=U ei„U, the specific model we shall study is given by
the Lagrangian

TrL„L"+ Tr(U —1)
f2 f2m2

16 " 8

One portrayal of the 8 =3 solution U3(x) is shown in
Fig. 1, which displays a surface of constant baryon-
number density at the representative value 8 (x) =0.4
fm, where

8~(x) = (e&'&'(24~') TrL,Lg, (2)

010
g= 001

,100,

0 —1 0
—A= 1 0 0

,0 0 —1,
It is useful to recast these matrices in SU(2) form by in-

is the baryon-number current. This figure is striking in
at least two ways: First, the soliton bears no resem-
blance to a composite of three objects, and second, the
baryon-number density possesses a tetrahedral symme-
try. Upon closer examination, one finds that the pion
fields forming U3 transform according to the irreducible
vector representation of the tetrahedral group 43m. This
24-element discrete group is generated by two elements g
and —h, which in the vector representation have the
canonical form

+,Tr[L„,L,l [L&,L'1j,
32e

where m, is the pion mass and the values f = 108 MeV,
e =4.84 are taken from a fit of the nucleon and h, masses
in this model.

To describe nuclei of baryon number 8 as chiral soli-

tons, a fundamental condition is that the minimal-energy
static solution Utt(x) with corresponding winding 8 be
localized in space and classically stable against fission
into solitons of lower baryon number. The 8 =2 toroidal
Skyrmion is known to satisfy these properties. Recent
numerical computations of model (1) formulated on a
60 lattice with lattice spacing a =0.1 fm have extended
the known static solutions satisfying the classical stabili-
ty criterion from 8=2 up to 8 =6. If At& denotes the
classical mass of the soliton solution U~, then the compu-
tations of Ref. 7 give A, l, A$2 JR3=850, 1640, 2400
MeV, respectively. In particular, one verifies that Af3
& At2+Atl & Afl+ALl+Al, i.

FIG. 1. Surface of constant baryon-number density 8 (x)
=0.40 fm ' for the 8 =3 multi-Skyrmion solution (from Ref.
7). 8 (x) is tetrahedrally symmetric; in particular, it vanishes
along the four rays starting from the center of the soliton and
piercing the center of each face of the tetrahedron.
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verting the mapping

A RiJ(A)—:2 Tro;AoJA, A 6 SU(2) .

Then gJ =R;J(G) and h;J =R;J(H), where

7r z
G =exp i (o~+crq+cr3), H=exp i —a3

3JY 4

U3(x) =G U3(g x)G =H U3( —h x) H. (3)

Semiclassical quantization of the multi-Skyrmion
proceeds by promoting the isospin and rotational zero
modes of the soliton, represented by SU(2) matrices A
and 8', to dynamical degrees of freedom. Making the
replacement

corresponding to 120 and 90 rotations about the
x+y+z and z axes, respectively. (The signs of G and H
are arbitrary, and the choice made here is merely a con-
venient one. ) The tetrahedral symmetry of U3(x) may
then be expressed in the compact form

The space of physical states is also restricted by the
requirements of the Pauli exclusion principle, which is
implemented here in the form of Finkelstein-Rubinstein-
Williams (FRW) constraints. The latter amount to the
requirement that states of isolated B=l Skyrmions be
quantized as fermions, which in particular pick up a
phase of —

1 when adiabatically rotated by 2z. Howev-
er, it turns out that FRW constraints may be associated
with any one-parameter set of static finite-energy fields,
U(x, O), 0 ~ O~ 2rr, which is closed: U(X, 2rr) =U(x, 0).
These define maps from S into SU(2) describing loops
in configuration space that are either contractible or non-
contractible according to the homotopy rr4(SU(2)) =Z2.
Transformations of states associated with noncontracti-
ble loops, like the 2x rotation of a B =1 Skyrmion, are
assigned a phase —1 while those associated with loops
that are contractible to a point (no transformation) must
be assigned the phase +1.

For B=3, isospin and spatial rotations by 2z are indi-
vidually noncontractible. Hence for any unit vector n,

U (x) U (x, t ) =A (t)U3(R (A'(t) ) x)A (t) ', (4) e'"" "Iphys) =e " Iphys) = Iphys),
and inserting this into (1), we obtain a reduced Lagrang-
ian L„d quadratic in the time derivatives ak = —i
x Tro J, A A and bk =i Trot, A'A ':

L red &
d X +red

='3
1 l= —, a;UJaJ a W~JbJ+ 2 b VJbf W3.

Here the inertia tensors U;~. , V;~, and 8';~ are certain
functionals of the background field U3(x). (For the ex-
plicit expressions of these tensors and other details of the
quantization method used here, see Ref. 4.) This re-
duced Lagrangian may now be quantized by the usual
techniques; aJ and bJ are exchanged for the body-fixed
isospin and spin angular momentum operators E~ and L~,
canonically conjugate to 2 and 2'. These operators are
related to the usual coordinate-fixed isospin and spin an-
gular momentum operators IJ and JJ via

I; = R,J(A)KJ, J; = —R—;J(A') LJ,

implying I =K and J =L . The twelve operators I, J,
K, and L generate in fact the Lie algebra of O(4)J Jc

SO(4)L J ~ Their action on the coordinates A and A' is
given by

[I,,A]= —
—,
' o,A, [K,,A]=-,'A~;,

(5)
[L;,A'l = ——,

' cr;A', [J;,A'] = —,
' A'cr;,

while all other commutators between momenta and coor-
dinates vanish. The Hilbert space is spanned by the
states II,I3,K3,J,J3,L3), where I~ I3,K3 ~ I and—

J~ J3 L 3 ~ J. The subspace of fixed I, I3, J, and J3,
labeled by the states IK3,L3), is (2I+1)(2J+1) dimen-
sional.

implying that K and L, and thus I and J, are half in-
tegral. From the symmetries (3) one can construct two
additional closed loops and their associated FRW con-
straints. The requirement that the loops be closed will
restrict us to the proper subgroup 23 of the full tetra-
hedral group 43m, generated by f=(—h) and g. Then
defining M =K+L,

U3(x Of) e U3(x)e ', 0~ Of S Jr (6)

U3(x, o~) =exp[ —iog(M~ +M2+M3) J/~]U3(x)

x exp [iOg (M ~
+M2+ M3)/ J3],

0~ O, ~ 2rr/3,

are the loops of interest. From Eqs. (3)-(5), one can
show these loops are closed:

U3(X) U3(X Of 0) U3(X Of rt)

=U3(x, Og =0) =U3(X, O~ =2rr/3) .

The contractibility of loop (7) is easily deduced by ob-
serving that this loop traversed 3 times is equivalent to
an isorotation by 2z plus a spatial rotation by 2z. By
the multiplication rules of Zq, the product of two non-
contractible loops is contractible, and so we infer

exp —i (M~+M2+M3) Iphys) =+ Iphys) .
- 27K

343

This constraint is most easily solved in the basis provided
by the eigenstates IM, M3) of M angular momentum.
For M =0, 1, and 2, the unique states satisfying (8) are,
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respectively,

Io, o&,

—Ii, o&

(9)

(io)

Expressing H in terms of momentum operators, one finds

H =At3+ —
z Nv —w) I + (u —w) Jz+ wM z] .

uv w

Evaluating for states (13)-(15)above, we obtain

2 2

+I2, —» ' +I2, —»'
iX

' is ' Js '
( —, , —, IHI —, , —, ) =313+—

2
=2464 MeV,3 u+v 2w

8 uv —w2

where z =e"t . In deriving (9)-(11), I have used Con-
don-Shortley phase conventions for the Wigner D func-
tions.

The (non)contractibility of loop (6) cannot be de-
duced by the method I used above for (7). Thus we do
not know a priori whether the end-point operator e
acting on physical states gives + 1. In the absence of
mathematical proof, I shall fix the phase consistent with
the known existence of the I =J(=K=L) = —,

' isodoub-
let nucleus ( He, H). By the addition rules of angular
momenta, this state must be a linear combination of
states with M=O and 1, and hence of states (9) and
(10). But only the first of these is an eigenstate of
e

' ', with eigenvalue + 1. Therefore,

e
' 'I phys& =+

I phys& . (12)

I=J= —,': IO, O&,

I=J= z: IO 0)

I=J=
2 .'I3, 2)(z *) /J2 + I3, —2)z /J2,

(i3)

(i4)

(is)

This excludes both (10) and (11) from the space of
physical states, leaving (9) as the unique state with
I =I=

2 . This also implies that there are no states with

the quantum numbers I= 2, I=
2 or I = 2, I=

& .
The two FRW constraints (8) and (12) may be sum-

marized as follows: Physical states must transform as
the trivial representation of the proper tetrahedral group
23 as embedded in SU(2)~. For I,J( —', , the only al-
lowed states are

8 uv —w2

8 uv —w2

From its mass splitting (approximately 270 MeV) with
the J = 2+ ground state and its quantum numbers, the

state may be interpreted as an NNh, nucleus in
which one nucleon is excited to a h. isobar. Such excita-
tions have been seen, for instance, in inelastic electron
scattering off He nuclei (cf. Ref. 11). On the other
hand, while the quantum numbers of the 2 state are
also accountable by a trinucleon system in which one nu-
cleon is excited [e.g. , NNN(1520)], its excitation energy
of 140 MeV is simply too small for this interpretation.
Similar anomalously low-mass states appear in the spec-
trum of dibaryon resonances of the quantized bi-
Skyrmion, but their excitation energies increase once
nonzero modes of the soliton are quantized. ' Further
work, therefore, will be required to accurately determine
the mass of this tribaryon resonance.

In summary, by making one assumption, namely, the
contractibility of loop (6), I have shown that the ground
state of the quantized 8 =3 multi-Skyrmion is the
unique state with the quantum numbers I= 2 and J

To test the identification of this state with the
physical He and H nuclei, a computation of its static
electromagnetic properties (magnetic moments, charge
radii, etc.) is now in progress. The results of that investi-
gation will be reported in a forthcoming publication.

This work was supported in part by the Department of
Energy under Contract No. DE-F605-84ER40141.

again working in the IM, M3) basis. The parity of these
states are obtained as the eigenvalues of an operator P
which takes

U3(x) PU3(x)P =U3( —x)f,
as deduced from the negative intrinsic parity of the pion
field. Using (3)-(5), one finds that P=e' ', so that
states (13)-(15)have +, +, and —parity, respectively.

The masses of allowed states are computed as expecta-
tion values of the Hamiltonian operator H derived from
L„,d. The symmetries (3) imply that the inertia tensors
are all proportional to the unit matrix, e.g. , U;~. =u6;~,
V~ =v6;~, and 8;~ =w8;J. , where u, v, and w are respec-
tively found to be 136, 435, and —91 in units of 1/e f,.
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