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Strings from Five-Branes
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A heterotic string emerges as a soliton of the heterotic five-brane. We compare its properties with the
fundamental heterotic string and suggest that the two might be identified. The solution relies on the ob-
servation that the classical five-brane Lagrangian incorporates string one-loop efects.

PACS numbers: 11.17.+y, 11.10.Kk

Strominger' has recently discovered that the field-theory limit of the heterotic string admits a heterotic five-brane

as a soliton solution. In this paper we show the converse, a result which lends further support to the idea of string-five-
brane duality. After constructing the solution, we examine its zero modes and suggest that they might correspond to
those of the fundamental heterotic string written in a physical gauge.

The bosonic sector of the D=10 classical heterotic string action describing the coupling of the supergravity fields

gMN, bMN, and p to the SO(32) Yang-Mills field AM (M =0, 1, . . . , 9) may be written as

S(string) = d ' x v —g R ——(8$) — e ~H —a'e ~t t QtrFMNFp +io

where FMN are Hermitian matrices in the fundamental representation, t Q= —, (g g Q —g Qg ), and the three-

form field strength H is given by

H =db+2a'to3 dto3 trF AF . (2)

The string tension T2 is given by 1/a'=2ttTz. We claim that the corresponding heterotic five-brane action, for which

the two-form bMN is replaced by a six-form aMNopQII, is given by

~0S(five-brane) = d' x 4—g R ——(8&)
2K'

1 P~ 2 r y/2t IJKLMNPQ trF F g F
27t 24

IJ KL MN PQ

where

tlJKLMNPQ L ( IK JL IL JK) ( MP NQ MQ NP)g
L ( KM LN KN LM)( Pl QJ PJ Ql) i ( IM JN IN JM)( KP LQ KQ LP)

+ (gJKgLMgPNgQI +gJMgNKgLPgQI+ gJMgNPgKQgLI+ permutations ) (4)

and the seven-form field strength K is given by

K=da+
& P'to7, dco7=trFAFAFAF.

The five-brane tension T6 is given by 1/P'=(2 )'IrT . 6

This unconventional quartic Yang-Mills action and the
corresponding quartic Chem-Simons terms (5) require
some justification. This will necessarily be indirect since,
although the super five-brane a model is well known,
the heterotic five-brane cz model has yet to be construct-
ed. Even if we knew it, the quantization of five-branes is
still in its infancy, and it is doubtful that (3) could yet be
derived as rigorously as (1). The point of view we adopt
is that the five-brane action is obtained by dualizing the
string action, i.e., by the interchange of field equations
and Bianchi identities via E=e ~*H, where the asterisk
denotes the Hodge dual. However, this process does not
respect the loop expansion in the Yang-Mills sector and
what is a tree-level effect in string perturbation theory

may be a one-loop efkct in five-brane perturbation the-

ory, and vice versa. To understand this, we recall the
relationship between the string loop coupling constant

g2, the five-brane loop coupling constant g6, and the vac-
uum expectation value po of the dilaton: g6=g3 '

=exp( pp/3). (This implies, in particular, that the
strong-coupling limit of the string corresponds to the
weakly coupled five-brane, and vice versa. ) This, in turn,
follows from the relationship between the canonical
metric appearing in (1) and (3) and the metrics which

appear naturally in the string and five-brane o. models,
namely,

gMN (canonical) =exp( —p/2)gMN (string o model)

=exp(p/6)gMN (five-brane+ o model) .

In string variables each term in the string tree-level ac-
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tion S(string) is proportional to exp( —2p) which reveals
that the string loop coupling constant is given by
exp(&0). Similarly, in five-brane variables each term in

S(five-brane) is proportional to exp(2&/3). Thus the
Green-Schwarz anomaly-cancellation term trb AF AF
AFAF and also the term which in canonical variables
looks like

gexp—(p/2) t trF/JFxLFLMFPQ

have no p dependence in string variables and are there-
fore seen to be one loop in string perturbation theory.
The explicit one-loop calculation of this quartic Yang-
Mills action has been carried out by Ellis, Jetzer, and
Mizrachi. On the other hand, both these terms are tree
level in five-brane perturbation theory, because they both
behave like exp(2$/3) in five-brane variables and must
therefore be included in the five-brane tree-level action,
S(five-brane). By the same token the term in S(string)
which in canonical variables looks like 4 —g exp( —p/
2)t QtrFMNFpQ and the Chem-Simons term in (2)
corresponding to trFAFAa are one loop in five-brane
perturbation theory since they are independent of p when

written in five-brane variables. We therefore omit them
from S(five-brane). In arriving at (3) and (5) we have
also employed the equation ~ T2T6=z which relates
the two tensions. Note that T2 has dimension 2 and T6
has dimension 6, which is another reason for expecting a
quartic classical Yang-Mills action for the five-brane.
This causes no problems with unitarity. We emphasize
that the exact string and five-brane actions are equiv-
alent; it is merely the division into "classical" plus
"quantum" which is diA'erent in the two cases.

Under the two-parameter rescalings of the background
fields g~~ k o g~~, b~~ X bMw, a~mopy~

7 1/2 3/2 2

&~~opgg, e ~ ~ e, the elementary five-brane
o.-model action S6 and the elementary string-o. -model
action S2 scale like S6 0. S6 and S2 A, S2. In order
that S(string) admit a five-brane as a soliton, ' it must
scale the same way under the o symmetry, i.e.,
S(string) ~ o S(string). This is indeed the case. Simi-
larly, we are encouraged in our search for a string soliton
solution of S(five-brane) by noting that it scales in the
right way under the X symmetry, i.e., S(five-brane)~ X S(five-brane). Without further apology, we now
solve the field equations.

We begin by making an ansatz for the D =10 super-
gravity fields corresponding to the most general two-
eight split invariant under P2xSO(8), where P2 is the
D=2 Poincare group. We split the indices x =(x",
y ), where p=0, 1 and m =2,3,4, . . . , 9. We write the
line element as

ds =e "rt„,dx" dx'+ e Bmn dy dy",

and bo~ = —e which implies

q+ 2A~mnopqrs (8 )
—1/2 mnopqrsr g C

(6)

(7)

where g=detg „. All other components of EC and all
components of the gravitino y and dilatino k are set to
zero. P2 invariance requires that the arbitrary functions
A, B,C and the dilaton p depend only on y; SO(8) in-
variance then requires that this dependence be only
through r=(bm„y y") '/ . One may now show that the
four functions A, 8, C, and p are reduced to one by the
requirement of some unbroken supersymmetry. In other
words, there must exist Killing spinors e satisfying

D + 4/2(3I NoPQRsT 7P Nf oPQRsT)~, e ()
2.8!

I M g ~ P/2f. MNoPQRsy( e 01 1

2 2 2.2 2.7!
(9)

We make the two-eight split of the D=10 Dirac ma-
trices I A =(y SI q, l Z, ), where 2 is a tangent space
index, and y, and Z, are the D=2 and D=8 Dirac
matrices, respectively. We also define y3—= yoyl and I q

=X2Z3 ' ' X9. We may then write e =et3 g, where e is a
spinor of SO(1,1) and rt a spinor of SO(8) which may be
decomposed into chiral eigenstates via the projection
operators (1~ y3)/2 and (I+ I q)/2, respectively. Since
I ~~s=e where I ~~ =y3|319, the D=2 and D=8 chirali-
ties are correlated. Substituting our ansatz into (8) and
(9), and requiring that the metric be asymptotically
Minkowskian, we find A =3(p —po)/4, 8= —(p —&0)/
4, and C=2& —3&0/2. Moreover, e=exp(3&/8)eorto,
where t..o and go are constant spinors satisfying
(1 —y3)co=0 =(1 —I q) tlo, and hence one-half of the su-
persymmetries are broken, just as for the solitonic five-
brane. '

In the Yang-Mills sector we set the gaugino g to zero
and make an ansatz for A~ which preserves both the bo-
sonic and fermionic symmetries. In his solitonic five-
brane solution, Strominger found that such a configur-
ation was provided by the instanton' in the four trans-
verse dimensions which ensured that

P/4(tMNPQI +I MN)F +. . 0 (10)

by virtue of the self-duality condition

( ) i/ tmnpqF mnpqF (»)
and the chirality condition (1 —I 5)r10=0. Since they
arise from a superstring calculation, the bosonic string
one-loop corrections shown in Eq. (3) are undoubtedly
part of a supersymmetric action. However, neither the
authors of Ref. 9 nor anyone else to our knowledge has
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written down the explicit transformation rules. Never-
theless, preliminary investigations based on Ref. 11 indi-
cate that the gaugino transformation rule requires that

34/4(r IJKLMNPQI. +I lJKLMN)F F F

(i2)

Hence, bearing in mind the chirality condition (1 —19)
x go=0, we require an instanton in the eight transverse
dimensions which obeys the condition

( 8 ) I /2tij klmnpqF F F i ij klmnpqF F F (I 3)

Such a configuration is provided by the SO(8) instanton
in Ref. 12. Explicitly,

our quartic Yang-Mills kinetic term and quartic Chern-
Simons term in S(five-brane) go over into the kinetic
term and Wess-Zumino term of the string o model. Ac-
tually, one obtains a string with 8 times the tension of
the elementary string. So, in this sense, our soliton is
worth 8 strings. Entirely analogous behavior was found
for the solitonic' and elementary' five-brane solutions
and for the quadratic Yang-Mills term in S(string) and
the five-brane o. model. ' Following Ref. 13, we may
calculate At2, the mass per unit length of our infinite
string. We find

(i7)
where the topological charge Q2 is given by

F „=(i/2)f(r)Z, (I —I 9)/2,

4 2/( 2+ 2) 2
(i4) Q2= —

2 &,E= —
6 p', trFAFAFAF =87r/T6.

for which the only nonvanishing components correspond
to the SO(8) subgroup of SO(32). The constant p is the
instanton size. [That these instanton configurations solve
the Aat-space Yang-Mills equations may be seen by tak-
ing the covariant derivative of both sides of Eq. (11) or
(13). They also solve the curved-space equations includ-
ing the dilaton and antisymmetric tensor couplings. In
both cases the transverse components of the energy-
momentum tensor vanish identically. In arguing that the
instantons preserve half the supersymmetry we have con-
sistently ignored the higher-loop corrections in Eqs. (10)
and (12) denoted by the centered dots. In particular,
this means ignoring the terms cubic in FMN in Eq. (10)
relative to the linear terms since they appear with a rela-
tive factor exp(2$) in string variables and ignoring the
terms linear in FMN in Eq. (12) relative to the cubic
terms since they appear with a relative factor exp( —2p/
3) in five-brane variables. ]

To determine the single unknown function p, we sub-
stitute these results into the field equations obtained by
varying S(five-brane). They are either satisfied identi-
cally or else reduce to the single equation

8 "8 B„e "=—420P'e " 'f'(r), (is)

and hence

r +6r p + 15r p +20p
(r2+ 2)6

where the constant k is given by k =8xT6 '
exp(PO/

2)/307 and 07 is the volume of the unit seven-sphere.
Our solution is nonsingular everywhere and corresponds
to an infinite string in the physical gauge X =~, 4' =o..
Remarkably, in the limit p~ 0, Eq. (16) goes over into
the singular elementary string solution of Dabholkar et
aI. ,

' who employed a string-o. -model source as opposed
to a Yang-Mills source in the supergravity field equa-
tions. This is because, as we shrink the instanton to zero,

(18)

Ms is the D=8 transverse space and S its boundary.
This saturates the Bogomol'nyi bound, ' a result which
provides further indirect evidence that, in common with
the elementary string solution, ' the solitonic string
preserves half the supersymmetries. These results are in
complete agreement with an earlier prediction based on
string-five-brane duality, and satisfy the Dirac charge
quantization condition Q2Q6 =x nrem with n =8, where Q6
is the Noether charge associated with the elementary
five-brane.

Following Strominger', we may now count the Bose
and Fermi zero modes associated with the instanton
moduli. We find eight bosonic translation modes (both
left and right movers) and eight fermionic supersym-
metry modes (left movers only), one dilation mode and a
further 220 modes arising from the embedding of SO(8)
in SO(32) associated with the coset SO(32)/SO(24).
We have not yet constructed the world-sheet action and
it remains to be seen whether such an (8,0) two-
dimensional o. model can be identified with the funda-
mental Green-Schwarz heterotic string in the back-
ground of the soliton and written in a physical gauge. In
particular, one might ask whether, as for the five-brane,
there are any further fermion zero modes coming from
the Atiyah-Singer index theorem. A possible explana-
tion for their absence may be provided by the observa-
tion that the string one-loop supersymmetric partners of
F contain no gaugino kinetic term. " We emphasize
that the solution of this paper has been established only
to tree level in the five-brane field theory and is a priori
valid only for exp( —2p/ 3) «1. The question of wheth-
er it survives loop corrections remains a topic for future
research.

Although we omit the string Chem-Simons terms cor-
responding to trFAFAa from our classical five-brane
considerations, they play an important role as the five-
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brane analog of the Green-Schwarz anomaly cancella-
tion term. In the case of strings, the combined gravita-
tional and Yang-Mills anomalies for N=l supergravity
coupled to a Yang-Mills supermultiplet (with n left-hand
Majorana-Weyl spinors in the adjoint presentation) can
be characterized by a certain twelve-form I&2. As dis-
cussed in Ref. 8, the anomaly can be canceled only if I~2
factorizes into an expression of the form I~2=dHAXs,
where Xs is an eight-form. The necessary and sufficient
conditions are

n =dim6 =496,

TrF = —,', TrF"TrF —,««& (TrF )
(19)

1
, dH =trFAF —trRAR,

2Q

—,dK= trFAFAFAF —
8 trFAFtrRAR3

(20)

+ 32 trRARA trRAR+ 8 trRARARAR,

one may verify that the gravitational and mixed terms
make no contribution to either the five-brane soliton or
the string soliton.

Clearly, it is now a matter of some urgency to con-
struct explicitly the heterotic five-brane and to under-

There are only two solutions: SO(32) and EsxEs. The
anomaly is then canceled by the addition of a term in the
action b AX8. In the case of the five-brane, we would re-
quire that I~2 factorize into an expression of the form
I)2=X4AdK, where X4 is a four-form. Assuming that
the same I ~2 governs both strings and five-branes, we dis-
cover from Ref. 8 that the necessary and sufTicient condi-
tions for this to happen are exactly the same as those
given in (19). Hence we find SO(32) and EsxEs once
more. The anomaly is then canceled by the term X4Aa.
Thus I&2 takes on the string-five-brane symmetrical
form I ~2 =dH AdEC. If we include the gravitational
terms

stand its quantization.
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