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It is argued that any quantum probability should correspond to a ratio between the number of counts
(positive results) in some measurement and the number of copies of the physical system initially
prepared. Then, the proofs of Bell’s theorem are criticized on the grounds that the probabilities used to
show a violation of the Bell inequalities do not fulfill that condition. A hidden-variables model is pro-
posed which reproduces the results of the optical experimental tests of the inequalities, even with perfect

polarizers and detectors.
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Bell’s theorem! states that local hidden-variables

theories of quantum mechanics are not possible. The
proof consists of two parts. First, some inequalities are
derived which should be fulfilled by every local hidden-
variables theory. Second, it is shown that there are
quantum-mechanical predictions violating the inequali-
ties. The purpose of this Letter is to point out that the
second step is incorrect in the existing proofs and, conse-
quently, the theorem has not yet been proved.

Although I have no criticism of the derivation of the
Bell inequalities, it is convenient to recall the steps in the
derivation, following Clauser and Horne.>? We consider
an EPR- (Einstein-Podolsky-Rosen-) type experiment in
which we prepare a pair of correlated particles, and we
measure a dichotomic (yes-no) observable on each parti-
cle, the measurement events having spacelike separation.
Let p(a),b;) be the joint probability of getting the
answer yes in both measurements. Then, on an identi-
cally prepared two-particle system, we measure another
pair of dichotomic observables, obtaining the probability
plci,d>z). In a similar way we obtain p(a;,d,) and
p(c1,b2). In the first or in the third experiment, we mea-
sure the probability p(a;) of getting the answer yes for
the observable a; of the first particle, independently of
the result of the measurement on the second particle [the
value obtained for p(a;) should be the same whether it is
measured in the first or in the third experiment]. Simi-
larly, we measure p(b;) cither in the first or in the
fourth experiment. Under these conditions, any local
hidden-variables model predicts the following inequali-

ty:2
pla)+pby)=pla,,by)+play,d,)
+p(C|,b2)_p(c‘1,d2). (1)

In the proofs of Bell’s theorem, the contradiction with
the inequality (1) (or another similar one) is usually
shown by considering a spin-correlated pair of particles
placed at two points x; and x, (or within small regions
around these points) at the same time ¢ (time measured
in some inertial frame, e.g., the laboratory). For in-

stance, if the particles are photons in a singlet state, we
may choose as observables the polarizations in four
directions, all perpendicular to the vector x, —x;. Let
|w) be the Hilbert-space vector corresponding to the two-
photon state as defined above, and A4,,C,,B,,D; the four
polarization operators. Then, the probabilities involved
in (1) are

pla) =(yla\ly)=1%,

Q@
play,by) =(y|ABs|ly) =+ [1+cos2(a—b)], )

and similar results for the other cases, (a—b) being the
angle between the corresponding directions of polariza-
tion. These probabilities violate the inequality (1) for
some choices of the polarizations, which completes the
usual proof of Bell’s theorem.

My criticism to the proof is that the two-particle state
defined above, represented by the Hilbert-space vector
|y), has not been shown to be a physically realizable
state. Of course, it may be postulated that every vector
in the Hilbert space of the system corresponds to a physi-
cally realizable state. But it is by no means obvious that
such a strong assumption should be a part of the quan-
tum formalism. In fact, it is well known that some re-
strictions have already been introduced under the name
of superselection rules, and further constraints may be
found in the future. Consequently, I claim that any
proof of violation of a Bell inequality by quantum predic-
tions should necessarily involve finding an (ideal) experi-
ment with the following conditions. We should prepare a
physical system in some region of space and allow it to
evolve. The system is divided into two (or more) subsys-
tems, each going to a different region of space. Finally,
we should get the correlation between appropriate ob-
servables by means of two spatially separated measure-
ments. In the full experiment many copies of the initial
system should be identically prepared and the fraction of
times that the measurement gives a positive answer is to
be used as (an approximation of) the probability suitable
for checking Eq. (1).

The point is that only the ratio between the final num-
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ber of counts measured and the initial number of systems
prepared corresponds to a genuine probability. Other
numbers which may appear at intermediate steps of the
calculation should not be interpreted as probabilities, no
matter how appealing the interpretation may appear to
our intuition. If we insist on such interpretations, we
may even obtain negative probabilities, as correctly
pointed out by Feynman.?

In order to clarify the point, I shall study the tests of
Bell’s inequalities performed by measuring the polariza-
tion correlation of optical photon pairs. These form the
main class of experiments where it is generally believed
that a Bell inequality has been violated. For the sake of
clarity, I shall consider tests using 0-1-0 atomic cascades
and one-channel polarizers, but the analysis for other
cases leads to similar conclusions.

If we want to prepare a two-photon system in a singlet
spin state, we must do that by taking an atom localized
around some point x and having total angular momen-
tum J=0. If the atom emits two photons in a cascade,
passing through a state of J=1 towards a state J=0,
then the pair of emitted photons has zero total angular
momentum. This was the procedure used in the cele-
brated experimental tests of Bell’s inequalities by Aspect
and co-workers.* But the state so prepared is quite
different from the one considered in relation to Eq. (2).
The latter, having zero angular momentum, is a state of
spherical symmetry, which means that the photons are
not localized but spread in the form of a spherical wave.
Consequently, the probability for one photon being
detected by an ideal detector placed in the direction of
the unit vector u;, or both photons simultaneously
detected by two perfect detectors placed in the directions
u; and u,, is, respectively,

P(uy) =(y|U,|y)=0q/ar, 3)

P(ll|,llz)=<W|U1U2|W)=(Q/47t)2(1(9,‘P) 4)

(cosf=u;- u,), where Q is the solid angle covered by the
apertures of the lens systems (assumed the same for both
photons, for the sake of simplicity), U, is the quantum
projection operator corresponding to the observable lo-
calization of the photon in the given solid angle, and
similarly for U,. The half-angle ¢ of the cone covered
by the apertures is related to the solid angle Q by

Q =271 —cosp) . )

Finally, a(0,¢) is an appropriate angular correlation
function which I exhibit here in the most relevant cases

a(6,0) = 3 (1+cos?0) ,
6)
a(m,e) =1+ + cos?e(1+cose)?.

The first expression is the well-known angular correla-
tion for 0-1-0 cascades and point detectors. The second
one can be obtained from the first by a straightforward

integration when the solid angles covered by the aper-
tures are finite.

Similarly, if we insert appropriate ideal polarizers in
front of the detectors, the single and joint probabilities
for detection are

pluja,) =(y|U,A4,\|ly)=0/8x, )
p(ula;,uzbz) =(W|U1A1U232|l//>

=(0/87)%a(0,9)[1+F(0,0)cos2(a—b)]1,

8)

where the so-called depolarization factor® F(6,¢) is re-
lated to the change in polarization correlation when two
photons have wave vectors making an angle different
from 7. The expression for F(6,¢) is cumbersome,> but
for u;=—u, (i.e.,, 6=r) and small ¢, it is given by

F(re)=1—% (1 —cosp)?, ()]

which is very good approximation even for ¢ =7/6.

The important point that I want to stress is that (3),
(4), (7), and (8) are correct quantum probabilities, ob-
tained by means of the standard quantum rules for the
calculation of expectation values (for observables with
range {0,1}, as used here, probabilities are the same as
expectations). In sharp contrast, expressions (2) are not
expectations in a physical quantum-mechanical state.
Therefore (7) and (8), but not (2), should be used to
check whether the quantum predictions violate the Bell
inequality (1), and the result is that they do not. In fact,
putting (7) and (8) into (1), it can be checked that the
right-hand side is smaller than the left-hand side when-
ever the following inequality holds:

(1+V2F)a < 8x. (10)

Using Eqgs. (5) and (6) and the fact that F <1 it can be
checked that this inequality is always fulfilled in the
atomic cascade experiments considered here.

The use of (2) has been sometimes justified by saying
that the probabilities involved in the Bell inequality can
be defined for “the ensemble of photon pairs such that
both members of the pair enter the corresponding aper-
tures.” Such an ensemble, however, does not correspond
to a quantum state, but involves the implicit assumption
that it makes sense to speak about whether a photon has
passed through the apertures. This amounts to making
statements about the positions of the photons at times in-
termediate between the preparation and the measure-
ment, without actually measuring these positions. (Ob-
serve the similarity with asking by which slit a photon
passes in the two-slit experiment.) This is clearly foreign
to the quantum formalism. It must also be taken into
account that the two-photon state with zero angular
momentum is a pure state according to quantum
mechanics and, therefore, should not be considered as
composed of several distinguishable subensembles.
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The Bell inequalities are not sufficient conditions for
the existence of local hidden-variables models. There-
fore the compatibility of quantum predictions with Bell
inequalities does not prove that such models actually ex-
ist. A proof would consist of constructing a specific
model, but such a model would be rather complex if we
want to reproduce the quantum predictions (7) and (8)
with the full dependence in 0 in ¢. Here we exhibit only
a simplified model in which we ignore the angular corre-
lation, putting @ =1, and restrict ourselves to the particu-
lar (but most important) case §=x. We consider two
hidden variables A; and A, with values in the interval
[0,7] and define an ensemble of “photon pairs” by the
density

p(Ai,A2) =[1+cos(2r; —212)1/72. an

We assume that the probability that a photon with hid-
den variable A is detected after crossing a polarizer set at
a (a € [0,7]) is given by

B if | —al = y(modr),
0 otherwise.

PQa)= { (12)
Putting (11) and (12) in the standard Bell’s formulas for
single and joint probabilities

play) =fp(7k1,kz)P(k1,a1)dek2, 13)

plarb) = [ pOua)P(,a ) POsbYdM A, (18)
we obtain (7) and (8) provided we choose
2y) “'sin2y=vF, By=0/16. 15)

For solid angles not too large this gives, taking (5) and
(9) into account,

y=~2Q/4r, p=-2n/8, (16)

where B is smaller than 1 as it should be [see (12) and
remember that P is a probability]l. In contrast, the mod-
el cannot reproduce the result (2) without violating the
condition P(A,a) <1. Finally, putting P=Q/4r, in-
stead of (12), we can also reproduce (3) and (4).

I emphasize that the model does not rest upon the low
efficiency of optical photon detectors, as previous models
do.?® Polarizers as well as detectors have been assumed
ideal. The model exploits the fact that the depolariza-
tion factor F(m,¢) is smaller than 1 and decreases with
increasing ¢ [see Eq. (9)]. Depolarization is usually con-
sidered as a minor practical effect of the nonideality of
the experiments. But it is not so. It is a physical
phenomenon related to the fact that linear polarization
of a photon is only defined in directions perpendicular to
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the wave vector, which in turn is a consequence of the
transversality of the electromagnetic waves.

A final comment is in order about the empirical tests
of the Bell inequalities performed by Aspect and co-
workers* and others.® The received wisdom is that the
inequalities are violated not only by quantum mechanics,
but they have been actually violated by the experiments.
The fact is that the experiments have confirmed Egs.
(3)-(8), and therefore quantum mechanics, but the
claimed violation of the Bell inequalities arises only when
the quotients of (7) to (3) and (8) to (4), measured as
ratios of counting rates, are incorrectly interpreted as
probabilities. In fact, true probabilities in these experi-
ments should correspond to ratios of counting rates to
preparation rates (say, decay rates in the source). In
contrast, the ratio between two counting rates in two
different experiments (one with polarizers in place, and
the other with the polarizers removed) is not a probabili-
ty. It is just a ratio of probabilities provided we are sure
that the decay rate in the source was the same in both
experiments. Certainly, the identification is made more
palatable by showing the violation by the experiments of
some inequalities involving only ratios of probabilities.
However, the new inequalities are not mere consequences
of locality, but need additional assumptions.® Therefore
the experiments have only refuted those local hidden-
variables models which agree with these additional hy-
potheses. A similar criticism applies to the recent exper-
iment by Rarity and Tapster.” In fact, the correlation
coefficient defined by their Eq. (1) is a ratio of detection
rates rather than a quotient of some combination of
detection rates by a production rate.
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