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Interacting-Electron Model Exactly Solvable in Any Dimension
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Wher; processes not conserving the double occupation number are inhibited, one obtains a model like
the Kivelson-Schrieffer-Su-Heeger extension of the Hubbard model. We solve this model exactly in any
number of dimensions, The system free energy is given for any fixed filling. The ground-state energy
and double-occupancy order parameter are discussed for d=2.

PACS numbers: 05.30.Fk, 71.10.+x

The extension of the Hubbard model proposed by Kivelson, Schrieffer, Su, and Heeger' (KSSH) includes, besides an
extra diagonal term designed to account for Coulomb interaction between nearest-neighbor sites (which in the sequel
we shall neglect), an off-diagonal part intended to represent bond-charge repulsion interactions. ' In the present Letter
we consider a further generalization of that model, assuming spin-dependent hopping amplitudes, given by

H=gen; +Urn; ln;1+ —,
' g gt ' (a;t a; +ait a; ) —

2 g ght ' (a;t a; +ait a; )(n; — +n& — ), (1)
i, cx i (i,j) a, cr' (i,j) o, o'

where the last factor represents just the bond-charge
repulsion term characteristic of the KSSH model. The
extra terms in (1) describing spin-Ilip (spin-
nonconserving) hopping processes can be thought of as
due to spin-orbit coupling. As customary, a;~,a; are
fermionic creation and annihilation operators
(ja;,a; j =0, fa;,a; j =8;;8 1, n; =a; a; ) over
a d-dimensional lattice A (i,j G A, a & ft, Jj),
whereas the parameters e, U, t, and ht have the usual
meaning, and (i, j) stands, as customary, for nearest
neighbors (nn) in At 1. For simplicity we assume initial-

ly A " to be simple d cubic.
As we intend to study the statistical mechanical prop-

erties of the itinerant-electron model defined by (1), in

particular the equilibrium features it exhibits in the ther-
modynamic limit, we shall consider hereafter, instead of
0, the eAective Hamiltonian P =0—p%,—where p
denotes the chemical potential, and N, = g;n; t+n; ~

the
total electron number operator —which is required in the
grand-canonical ensemble scheme. & has, of course, the
same form as 0, with e replaced by m =e —p.

Contrary to the Hubbard Hamiltonian, the Hamiltoni-
an (1) assigns different amplitudes to the hopping pro-
cesses, depending on the relative site occupation. In par-
ticular, one can check from (1) how the closer At is to t,
the more the hopping processes between two singly occu-

!
pied sites and a doubly occupied and an empty site are
inhibited.

We factorize P =No+ &~, where Pj includes all the
hopping nondiagonal terms, whereas &o is diagonal, as it
depends only on the occupation numbers n; . In the
particular case when t ' =ht, [&—0, 'iY~) =0, obvi-

ously implying that both the number of electrons %, and
the number of doubly occupied sites g;n; tn; t are con-
served quantities. In this case we shall solve exactly the
model defined by (1) in any number of dimensions d,
and with t =t ' =t. We expect that if the latter
condition were replaced by t =0 (i.e., spin conser-
vation, no spin-flip processes allowed) the combinatorial
structure of the model, even though much more compli-
cated, should still lend itself to being exactly solved.
This case has been studied for d =1 in Ref. 5.

The condition of commutativity of Po and i"V
~ implies

equal amplitudes (in absolute value) for the hopping pro-
cesses from singly occupied to empty sites as for those
from doubly occupied to singly occupied sites. Such a
constraint can be removed by adding in the bond-charge
repulsion term in the Hamiltonian (1) a factor
gn;, —n;, — ~ to n;, — +n j, — . The latter simply changes
the relative amplitude of the allo~ed hoppings by the ar-
bitrary factor g

—l =p without introducing any new pro-
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/f = +co(N;+D;)+t g x; j(A;tAj+AjtA;)
i (i j)

+URN;D;, (3)

where K- .—= 1 —D- —D -+ gD;D&. With the particular
choice co=O=U, a similar model has been dealt with,
e.g. , in Ref. 6.

The spinless operators A;, A~, N; satisfy the usual fer-
mionic commutation relations,

[A A j=O [A Atj=~ -1 [A-N]=A-~-- (4)

cess, yet preserving the commutativity of ft'o and Pi and
the solvability of the model.

On the other hand, the condition t =t ' natu-
rally leads to introducing a new set of local operators,

1A;= (a; )+a; i), N; =A;tA;,
2

(2)
D;= —, (n; i+n; i+a; ia; i+a; ia; i),

such that n;, t+n;, ~
=N;+D; and n;, tn;, ~

=D;N; V i 6 A,
and in terms of which the Hamiltonian /f can be easily
rewritten as

total number of sites in A) Z2-graded algebra

A =(N;,A;,A;,A;~Aj, 11i,j c A, iwj) —tt (A'11) .

Moreover, the D s are idempotent operators (D;D;
=D;), commuting with all the elements of A. The
latter property not only allows us to deal with the opera-
tors D; as with classical Ising-like dynamical variables,
but leads to recognizing that the model defined by (3)
has a dynamical algebra X which is the direct sum of 2
copies of A, each copy A corresponding to a given dis-
tribution a of eigenvalues s; C [0, I j of the D s.

The statistical mechanical solution of the model
is based, of course, on the evaluation of the
grand-canonical partition function Z~ =Tr~ [e
=Trz[e 'e 'j, where P = I/kpT.

Because of the above algebraic structure, the trace
over X, Tr, reduces to

Tr~ =g tr~. (5)IaI, faJ fs;),
The central problem is therefore to evaluate tr~. , name-

ly, the trace over the ath copy of A. In order to tackle
such a problem, we refer the Hilbert space of states to
the Fock basis 1yk) =S;1v;), k=1, . . . , 2, where v;)
denotes the eigenvector of the operator N;: N; v;)
=v;ivi), v; 6 [0, lj.

In the above basis,

(7)

QB l —fl„
I ~1 I &1 n=l

Because of the particular form of Ki j one has
m

e . (4,j)-=+,,... = + s(., 0)+&" Q ~(., », (9)
(mn )

modm i G k( i6X(

where i labels the sites of kt " numbered along the loop (so that i+1 is the nn of i). We shall see in the sequel that the(m„)

1384

tr~ [e j =+exp, g[(to+Us;)v;+cos;l .(ankle (6)
lv;I

where the index a in p and &'i is meant to keep track of the particular set of values of the s; s, labeled just by a, they
refer to.

The matrix elements entering (6) can be expanded as a power series in the variable r = —2Pt,
2I ' 2I OO'"' Iy.&=X '

&y~l. Z;, ;A A;. Irk&=1+2 ' Xe.,(b j)=-.,([ j)
I =0 2( ~ ii, j& I = i 2l fy l

Here h, tj denotes the collection of all loops in A with 21 edges (the number of edges is even because A i is cubic).
Such loops can be multiply connected, and each edge may possibly cover the same bond in A more than once. The
equivalence between the two series in r is based on the property that the matrix elements of the lth power of Pi'j have
nonvanishing contributions only from those factors which are associated with bonds (i,j) with nondangling ends. Such
contributions are each the product of a term e&,—originating from the tc; j s, and depending only on the [s;1i E ktj's
—times a term =&,—a diagonal matrix element of a sum of products of an equal number of operators A; and A;~ along
the loop, a function only of the [v;1i 6 Xtj s.

It is now convenient to decompose the set h, t j into its disconnected components, the ith of which is characterized by
the number of edges 2l; and the number of sites touched m;. We denote the corresponding set by [kt,

'
11 ~ I; ~ l;

(m;)

2 ~ m. ; ~ L; j [L;—:min(2(;, Ã)]. The sum over [Xtj in (7) is then decomposed into

L„

g e, (bj)=-,
j=l lt.j n= 1 2(n ~ m„=2 rt~(

where Jt =min(l, 2 Ã), and where g'{t,j denotes
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explicit expression of:- & „&([v;j) is not needed.
n

Equations (6)-(9) allow us to rewrite Z~ as the sum of two contributions, Ziv=Zo+Zi, the first of which—originating from the factor 1 in (7)—has the form

Zo=g +exp, g [(to+Us;)v;+cos;], =[1+2e P"+e O( + ")1 —=zo (io)

Zi =Zo Z r" g g / [6/'„"'(~,zo)+p""6/'„"'(M+U, e'zo)],
1=1 j=1 II.J n= 1

which contains the only remaining trace:
Ln

6t'„"'«,go)=, Z go
" Z X =-

& „&([v;j)He (i2)
n (rn )

iEAi

Equation (12) can be evaluated globally, by comparing the solution to an associated pure tight bindin-g model ob-
tained by the same procedure adopted above with the conventional solution derived by transforming to wave-vector
space.

Let us recall that a pure spinless tight-binding model can be characterized by the Hamiltonian

HTB=to+N;+t g (A;tA +A~A;) . (i3)I j J J 1

Repeating the whole derivation which led from (3) to (11),one obtains the partition function
r

Jl JII+X "X Z II6',"'(, o),(= 1
'=1 . n= 1

(i4)

whereas the second, containing the remaining part of the series, upon inserting the explicit expression (9) for
e & „&([s;j)and performing the configuration sums over fs;j and jv;ii g Xt

" j, turns out to be(m„)

n

(i6)

where zp:1+e
On the other hand, the model (13) can be exactly solved in a standard way for any number of dimensions d, as HTB is

diagona! in the wave-vector space. One finds in this manner for ZrB an expression formally identical with (14), in
which

& 6'."'( .")=—.
,

', X II (is)j! z&) k&», . . . , k&i&n=i (2l„)!
j

In (15), k = [@i, . . . , kdj is a vector in reciprocal space, ranging over a half of the first Brillouin zone, g), the double
prim~ in XII,&.&» is to remind us of the requirement that each term in the sum must have all indices k, n = I,
diA'erent from each other, and p(k) =2+d=i cos(k„).

Equation (15) must hold for every j, and provides both the functional form
(n)

6(n)(ti g )
g&) n

and the recursive equations for the Qi(")'s.
Insertion of the solutions for the latter in (11) leads then, after some manipulations, to

oo Jl

Zi =Z&& g r ' g —g g (x+p "y) g Q [(&&(k )]
I=I j=l J»t» n=i (2ln) ~ i&&»»&&i& m=i

where x =(2/z&& )e P" and y =xe
Resorting to the integral representation for the 8 function, whereby one can explicitly perform the sum P!t,», and

making use of the equality

J

g f(k" ) =(—1)'J!
k(i) k(j) „=1

J
'

pn

Z II
Pl, . . . ,Pj E Ãj n =1 Pn ~

where tti denotes the set of integers [p„in =1, . . . ,jj such that pi = i np„=j and 2„=—pk[f(k)] ", one gets

A/2 c&o

Zi =Zo g ( —i) g dg(re'~)"
j=l I~j 2Z' + ,

~ ——g [G(k, e -'«)]"1 1 (i8)
pi, . . . , pj G nj n= 1 P.!

with G(k, z)=x[cosh[zv&(k)] —lj+y[cosh[zpp(k)] —lj. After performing the integral, the partition function Ziv is
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obtained as
JVt/2 J=1+~ (-"» Z UPI, . . . ,P,-~, n=] P '.

&.(r)
n

(19)
where Q„(z)—:—(1/z ) Zk [G(k,z)]". In the thermo-
dynamic limit JV eo, expression (19) can be further
simplified by use of a known identity for partition poly-
nomials in number theory, and reads

Z~ =Zoexp(JVS), (20)
with 8 = JV '+1,ln[1+G(k, r)].

We now turn to the study of the free energy. In the
thermodynamic limit the free energy per site

f= lim — 1nZ~= ——(Inzo+P) .
1 1

pÃ p
In such a limit the sum over k 6 2) turns into a conver-
gent integral,

1 1
lim g ~

d doit Jl dad, J dad.

For the sake of simplicity we focus our attention on the

r

a zo 2.~np ———~ ln + g —,1, —Xe '
P t)co I+X (4trr) 2

g(s, 1, —z) denoting the Lerch zeta function, which, for
s =1 (i.e. , d=2), reduces to ln(1+z). In this case one
can easily solve Eq. (22) at T =0, and the chemical po-
tential is found to be discontinuous for U& 16!t! in
np=1. The ground-state energy u is then obtained as
u=(af/aP), ,+pn=o As i.t turns out to be piecewise
linear, u is given in Table I for different ranges of values
of np. In particular, one can notice that u is minimum
for I/tr ( no ( 1 —I/tt, and that the value U =16!t! is
critical, in that for fixed filling (1 —y(no ( 1+y, with

y
=max [I/tr —U/16tr! t!,0] ) the ground-state energy

changes through it, passing from a quadratic to a linear
dependence on U. The order parameter responsible for
this behavior is the double-occupancy expectation value,
namely, P =(af/aU)T=o, which at no=1 —

y becomes
diNerent from zero, whereas from np=l+f on it goes
like n p

—1. This implies that the model exhibits a
metal-insulator (Mott) transition. Figure 1 shows a plot
of u vs U at half filling (np= I) together with the corre-
sponding curve derived for the 10 Hubbard model from

particular choice p= +. 1, whereby % can be convenient-
ly expressed as a power series both in the variable
k:—(1 —R)/(1+R), R =Jl —2(x+y), and in r:

( 1)m
X [[Io(2mr)]'-1}

m=]

Ck P2k ( k), (21)
2k

where I,(z) is a modified Bessel function of the first
kind, the coeScients cI, are defined by

Ink (22)

! the exact solution.
In conclusion, it is worth pointing out that the solution

presented, besides constituting an interesting example of
an exactly solvable system, provides, on one hand, a
promising starting point for working out perturbatively
(e.g. , in the parameter t ht) solu—tions of the general-

0.0

—0.2

[I (2 )]d I
—g (d) 2k

k=1

and P„(tt) are the Apostol polynomials, related to the
Lerch zeta function. '

The free energy per site is given by the above expres-
sions once co is suitably chosen. Indeed, one has to fix
the total electron occupation number, namely, the ratio
no=(N, )/Ã. This is done here following the customary
convention of choosing the chemical potential as a solu-

!
tion to the equation no=Sf/&co. For instance in the
low-temperature limit (P eo)

TABLE I. Ground-state energy versus band filling.

Range no

O~ no ( I jtr
I jtt ~ no & I —I/tr
1
—I/tt ~ np( 1

—
y

1
—y~np(. 1+y

1+y ~ no & I —I/tr
1+ 1/tr ~ np (2 —1/tt
2 —I/tr~ no & 2

—no
—I/~
—1+no
(U/16! t!) (no —I ) —~y'
(U/8 t —1)(n.—I)
(U/8 t )(np 1)—I/tt
(U/8 t )(n. I) —(2 —n—.)

—0.3

1.00 U

2ltl
FIG. 1. Ground-state energy u/8!t! vs U/2!t! at no=1 f«

d=2. The dashed curve represents the same quantity for the
1D Hubbard model as given in Ref. 12.
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ized KSSH model (l); on the other hand, as the parti-
tion function Z~ is given exactly also for finite JV', it can
provide a reference test for numerical calculations on a
nontrivial quantum system. Finally, work is at present in

progress on the problem of studying the solution of the
same model within the Fermi-linearization approxima-
tion scheme. ' This can be done rather easily in that the
underlying dynamical (super) algebras are the same.
The exact solution discussed here can then become an
excellent testing ground for the fermionic mean-field ap-
proach.
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