Comment on "Spin Alignment in Superdeformed Hg Nuclei"

Recently, Stephens et $al.$ ^{1,2} concluded that mass-190 superdeformed nuclei exhibit nonzero quantized spin alignment. We suspect that current data do not sustain this conclusion.

The suggested alignment comes from the I vs ω plot. For example, the two lines in Fig. 1 representing ^{192}Hg and 194 Hg^{*} (excited bands b2 and b3), respectively, differ by 1h over a wide range of ω , which the authors interpret as a nonzero quantized alignment $(i \approx 1)$ in $^{194}Hg^*$ relative to ^{192}Hg . A similar situation exists for other $A \sim 190$ nuclei. However, this conclusion relies on the assignment of unknown spins which are uncertain by at least $\pm 2h$. If spin assignments are shifted down by one unit (two units for Tl) compared to those in Refs. ¹ and 2, all I vs ω plots (including $^{194}Hg^*$) coalesce and coincide with the solid line $({}^{192}Hg)$ as shown by the symbols in Fig. 1, implying essentially no alignment. Therefore, evidence for the putative quantized alignment requires knowledge of spins.

An attempt to find a spin-independent test of quantized alignment has been made.² The authors defined an incremental alignment Δi , depending only on γ -ray energies E_r , and related to the total alignment i through $i = \Delta I + \Delta i$, where ΔI is the spin difference between states in a band and those of the reference band (^{192}Hg) . The value of i is unknown, but ΔI is quantized; if Δi is quantized, *i* must be quantized. The data do show that Δi is quantized. However, notice that if $i = 0$, then $\Delta i = -\Delta I$ is also *quantized*, so the empirically quantized Δi is not proof of a nonzero quantized alignment. The value of i depends on ΔI , so a test of nonzero quantized alignment remains dependent on spins.

The authors used the Harris expansion to determine spin for the current situation in which only the E_y are known. They first fitted the moment of inertia by $f^{(2)}(\omega) = 2\alpha + 4\beta\omega^2 + 6\gamma\omega^4$, and then by integration obtain $\sqrt{I(I+1)}=2\alpha\omega+\frac{4}{3}\beta\omega^3+\frac{6}{5}\gamma\omega^5$. Unfortunately, such a procedure contains uncertainties. The parameters in the expansion are fitted to the data, which only exist for a certain range from ω_{ext} (\neq 0) to ω_2 , where ω_{ext} is the exit-spin frequency, so the expansion is well defined only for this region. However, to determine I_{ext} (exit spin) the integration range is from 0 to ω_{ext} ,

$$
I_{\rm ext} = \int_0^{\omega_{\rm ext}} \mathcal{J}^{(2)}(\omega) d\omega + I_0,
$$

which demands knowledge of both $\mathcal{I}^{(2)}(\omega)$ in the unknown region and the unknown initial spin I_0 . The expansion determined from ω_{ext} to ω_2 is irrelevant to the determination of the exit spin, unless one assumes that $I_0=0$ and that $\mathcal{I}^{(2)}(\omega)$ behaves the same in different frequency ranges; but there is no justification for this assumption. For example, data in the mass-130 region indicate a significant increase of $\mathcal{I}^{(2)}(\omega)$ at low frequen-

FIG. 1. Spin alignment in $A \sim 190$ superdeformed bands. The dotted line is an example ($^{194}Hg^*$) to show 1h alignment $(i \approx 1)$ if the exit spins are assigned according to Ref. 1; the solid line is the reference (^{192}Hg) . The alignment vanishes $(i \approx 0)$ as shown by symbols, which coincide with the solid line, if the exit spins are shifted down by $1\hbar$ ($2\hbar$ for Tl) compared to those in Refs. ¹ and 2. The exit-spin assignments are shown on the right-hand side of the legend for each case.

cy.³ There is no empirical reason to believe that this or other low-frequency effects cannot occur in the mass-190 region. Hence, I_{ext} determined in this way has an uncertainty which cannot reliably be estimated.

In addition, even if $I_0 = 0$ and the expansion were valid for the entire range of ω , our exhaustive calculations⁴ indicate that in changing spin by ¹ or 2 units the fitting rms error does not change much $[(0.14-2.6)h^2/\text{MeV}^{-1}]$. The spin assignments leading to no alignment appear to be at least as plausible as those suggesting nonzero quantized alignment. Of course, $i \approx 0$ is also nontrivial; however, separately we discuss a new theory⁴ of superdeformation for which this remarkable behavior is expected on quite general grounds.

Cheng-Li Wu, $^{(1),(2),(3)}$ Da Hsuan Feng, $^{(1)}$
and Mike W. Guidry $^{(2),(3)}$

- (1) Department of Physics and Atmospheric Science Drexel University Philadelphia, Pennsylvania 19104-9984
- Department of Physics and Astronomy University of Tennessee
- Knoxville, Tennessee 37996-1200
- ⁽³⁾Joint Institute for Heavy-Ion Research Oak Ridge National Laboratory Oak Ridge, Tennessee 37835

Received 10 October 1990

PACS numbers: 21.10.Re, 21.60.Fw, 24.70.+s, 27.80.+w

¹F. S. Stephens et al., Phys. Rev. Lett. 64, 2623 (1990).

 ${}^{2}F.$ S. Stephens *et al.*, Phys. Rev. Lett. 65, 301 (1990).

³P. J. Nolan et al., Annu. Rev. Nucl. Part. Sci. 38, 533 (1988).

 ${}^{4}C.-L.$ Wu et al. (to be published).

1991 The American Physical Society 1377