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Controlling Chaos in Spin-Wave Instabilities
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A microwave-pumped spin-wave-instability experiment is used to demonstrate that chaos can be con-
trolled by a small periodic perturbation of an available system parameter, as recently proposed by Ott,
Grebogi, and Yorke. The experiment is performed in an yttrium-iron-garnet sphere in the subsidiary-
resonance configuration with a small modulation in the applied magnetic field. Observation of the
Fourier spectrum of the low-frequency auto-oscillations and measurement of the attractor dimension and
metric entropy demonstrate clearly that the chaotic attractor becomes periodic when the modulation fre-
quency and amplitude are carefully chosen.

PACS numbers: 75.30.Ds, 05.45.+b

Spin-wave instabilities driven by microwave fields con-
stitute one of the best physical systems for studying non-
linear dynamic phenomena. A rich variety of behavior
has been observed in these systems, including self-
oscillations, spiking, period multiplication, intermittency,
and chaos. ' ' One of the main features of spin-wave
nonlinearities is that they can be modeled by nonlinear
equations derived from microscopic Hamiltonians with
well-known parameters, thus providing a theoretical
framework to interpret or predict experimental results.
On the experimental side, several parameters can be
easily controlled by the experimenter in a manner not at-
tained in other systems. As a result of combined experi-
mental and theoretical work, many features of the non-

linear dynamics of spin-wave instabilities are presently
well understood. However, much like in other physi-
cal systems, this is true for the prechaotic region and for
the borderline chaos, but not for the fully chaotic regime.

In this paper we report experiments with spin-wave in-

stabilities that demonstrate the feasibility of controlling
chaos by a small time-dependent perturbation of the
biasing magnetic field applied to the sample. This is the
first observation of the control of chaos by small pertur-
bations in an accessible system parameter, following the
recent proposal of Ott, Grebogi, and Yorke. ' The
method is based on the fact that a chaotic attractor usu-

ally has embedded within it an infinite number of unsta-
ble periodic orbits. By applying a small time-dependent
modulation to a conveniently chosen parameter one can
stabilize some of these unstable orbits to achieve control
of the chaotic state, without having to make large varia-
tions in the system parameters. In order to understand
the basic principles of the method, consider a dissipative
dynamical system described by N nonlinear differential
equations of the form dx/dt =F(x,p), where x is the
dynamical variable vector and p represents the various
system parameters. When the system is excited by some
external source (the microwave radiation in the case of
the spin-wave instability), x describes a continuous-time
orbit which appears as a discrete-time series of points in

a conveniently chosen Poincare surface in the N-

dimensional space. If the attractor is chaotic and chaos
has been approached by a cascade of period-doubling bi-
furcations, the time interval between two consecutive
piercings of the surface is nearly constant and given by
To=f0 ', where fo is the fundamental frequency. As-
sume now that some system parameter p=p; can be
modulated periodically about its mean value, with period
T~=nTO/m, where n and m are integers. The periodic
change in p can be tailored in such a manner that the
unstable orbit is synchronously pushed into describing
the same path as in the previous cycles during the time
interval mT~, thus resulting in a controlled trajectory.
Ott, Grebogi, and Yorke' have given a prescription for
finding the amplitude p* of the parameter variation
necessary to achieve control of chaos. Their approach
relies on the knowledge of the system equations or the
time series of an experimental variable. Here we deter-
mine p* experimentally by observing the behavior of the
chaotic system response with increasing parameter mod-
ulation.

The experiments were carried out with a polished
sphere (diameter 1.0 mm) of the "prototype ferromag-
net" yttrium iron garnet (YIG) at room temperature,
in the perpendicular-pumping, "subsidiary-resonance"
configuration. The sample is located at the center of a
critically coupled rectangular TE&02 microwave cavity
(Q =2000, f~ =co~/2tr=8. 87 GHz) placed between the
poles of an electromagnet, so that the microwave mag-
netic field h is perpendicular to the biasing field H, as in

the usual setup. ' ' However, we have added inside the
cavity a loop of diameter 1.5 cm made with a 0.5-mm
copper wire to allow the modulation of the sample bias-
ing field H=Ho+8Hcos(2trflt) over a broad frequency
range 0-10 MHz, typically with 8H/Ho —10 . The
microwave radiation is provided by an X-band back-
ward-wave oscillator with frequency stabilized by an
external crystal oscillator and manually adjusted to the
center of the cavity resonance. The radiation is
amplified by a 1.8-W traveling-wave tube, attenuated
with a variable precision attenuator, and directed by a
circulator to the resonant cavity where it drives spin
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FIG. 1. Data for the threshold field h, vs Hp for subsidiary-
resonance spin-wave instability in a 1-mm YIG sphere driven
by a microwave field h with frequency 8.87 GHz in a static
field Hp applied along the [1101 axis. The solid lines represent
the threshold boundaries for self-oscillations characterized by
Hopf and homoclinic bifurcations. The experiments on the
control of chaos described here were done at the indicated
point 2: Hp=1750 Oe, h =1.1 Oe.

waves in the sample. The nonlinear interaction between
spin waves results in a low-frequency auto-oscillation of
the microwave absorption which is detected with a sensi-
tive Schottky-barrier diode at the output port of the cir-
culator and recorded in a digital storage oscilloscope. In
order to avoid sample heating we use pulsed microwave
radiation (duration 100 ps at 100 pulses/s) but we can
record the steady-state regime of the signal since the
pulse length is much longer than the transient time and
the fundamental period To (few ps) of the auto-
oscillation.

The usual experiment to study spin-wave phenomena
is done with fixed values of Hp and varying microwave
power. At low power levels the steady-state reAection
from the critically coupled cavity is negligible. As the
driving field h is increased, an abrupt change in reflec-
tion occurs at the Suhl threshold h„due to the paramet-
ric excitation of a magnon pair with frequency
=co~/2 and wave vectors k and —k. The value of k is
determined by the frequency co~, the field Hp, and the
condition for minimum threshold, which depends on the
pumping configuration. Figure 1 shows data for h, vs

Hp obtained for the sample oriented with the [I 10] crys-
tal axis along the applied field. As h increases further, at
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FIG. 2. Evolution of the power spectra of the auto-oscillation observed at point A (Fig. 1) with increasing amplitude 8H of the
field modulation with frequency f~ =1480 kHz. The spectra in (a)-(d) were obtained with bH =0, 140, 287, and 435 mOe, respec-
tively. Spectrum (d) corresponds to a periodic signal with fundamental frequency fp=740 kHz and a subharmonic component at
fp/2, superimposed on another frequency of 1975 kHz.
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some threshold h,' & h, the amplitude of the refiected mi-
crowave radiation suddenly develops a low-frequency
(fn =100 kHz-1 MHz) auto-oscillation, arising from the
nonlinear interaction between collective spin-wave
modes. This is described by trajectories in a low-
dimensional phase space of slowly varying spin-wave
variables with time evolution governed by autonomous
differential equations ' ' in which the microwave fre-
quency enters only in a detuning parameter Amok

=col, —
co~j2, where hook —(10 -10 )co~ is of the or-

der of the auto-oscillation frequency 2rrfn. This low-

frequency spontaneous oscillation may exhibit a variety
of bifurcations as the system parameters are changed, in-
cluding intermittency and period-multiplication routes to
chaos. The solid lines in Fig. 1 represent the thresh-
old boundaries for Hopf and homoclinic bifurcations'
which lead to self-oscillations. The chaotic regime sets
in not far above these boundary lines and is character-
ized by an attractor with fractal dimension d in the
range 1.6 & d & 2.0 near the onset of chaos. '

By applying a small modulation to the magnetic field
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H with appropriate wave shape, frequency, and ampli-
tude we have been able to control the chaotic states in
most regions of Fig. 1. The field modulation results in a
corresponding modulation in the spin-wave frequency
mp, and so in the detuning parameter h, mk, providing a
handle to control the orbits. Figures 2-4 show the re-
sults obtained with a sinusoidal field modulation applied
after the system is driven to a fully chaotic regime with
h = 1.1 Oe and Ho = 1750 Oe, represented by point 2 in
Fig. 1. Figure 2 shows the evolution of the power spec-
tra, obtained from the digitally stored signals, with in-
creasing field modulation BH at a frequency f~ =1480
kHz. For BH ~ 200 mOe the spectra display broadband
features characteristic of chaos as shown in Fig. 2(a) for
6H=0. As BH increases above this value the spectrum
becomes progressively cleaner, with sharp lines charac-
teristic of a periodic signal. This is shown in Figs.
2(b)-2(d) for bH=140, 287, and 435 moe, respective-
ly. The spectrum in (d) corresponds to a periodic signal
with fundamental frequency fo =740 kHz and a subhar-
monic component at fp/2, characteristic of a period-
doubled oscillation, superimposed on another signal with
frequency 1975 kHz.

The control of chaos is further demonstrated by the
variation of the information dimension D ~ and the metric
entropy K of the attractor with increasing field modula-
tion. These quantities have been obtained with the
embedding technique ' from the time-delayed digitized
signals. We employ the method of Badii and Poli-
ti ' ' ' to calculate D ~ =D (0) and K—:K(0) from 2048
data points and obtain good convergence for embedding
dimension E &8. Figure 3 shows that for 8H &200
mOe D~ =3.5 and %=0.20, characterizing a fully chaot-
ic regime. Strikingly, for a modulation amplitude above
the critical value 6'H*=200 mOe, Di and E decrease
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FIG. 3. (a) Information dimension D(0) and (b) metric en-
tropy K(0) vs field modulation amplitude 8H. These quantities
have been obtained with the embedding technique from the
time-delayed digitized signals. Note that for bH & 200 mOe
the values of D(0) and K(0) decrease towards the values
D(0) 1 and K(0) =0 appropriate for periodic signals.
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FIG. 4. Critical modulation amplitude 80* vs modulation
frequency f~. The boundaries between the chaotic and con-
trolled regions have minima at values of f~ commensurate with
the fundamental frequency fo at ratios indicated at the top.
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with increasing bH towards the values D~ = 1 and % =0,
characteristic of a periodic trajectory. This result
confirms that the control of chaos is achieved by a small
periodic modulation of the applied field. In regard to the
data of Figs. 2 and 3 we note that with the application of
the field modulation the auto-oscillation enters a steady-
state regime only after a time r has elapsed. The spectra
of Fig. 2 and the time series used to obtain D ~ and E
were calculated from the steady-state portion of the sig-
nal. The delay time r decreases rapidly with increasing
amplitude modulation BH, in qualitative agreement with
the results of Ott, Grebogi, and Yorke. ' However, we
could not obtain a critical exponent relating ~ and the in-
crement amplitude a=aH —6'H* because of the di%-
culty in measuring i and BH with adequate precision.

Finally, in Fig. 4 we show the variation of the critical
amplitude 6H* necessary to control chaos with the
modulation frequency f~, measured at point A in Fig. l.
The measurements were done by scanning f &

at constant
BH and observing the change from chaotic to periodic
behavior directly at the oscilloscope. Notice that 6H*
has minima at values commensurate with the fundamen-
tal frequency fo, i.e., f ~ =mfp/n, increasing rapidly as f ~

departs from these values. Hence, the boundaries be-
tween the chaotic and controlled regions have the ap-
pearance of "tongues, " similar to those observed in

phase-locking phenomena. This is not surprising since
we expect the chaotic motion to be suppressed when the
unstable orbit becomes phase locked to the external pa-
rameter modulation. Although the phase-locking phe-
nomenon has been widely studied, it seems that this is
the first demonstration that it can be used to control
chaos.

In conclusion, we remark that we have been able to
suppress the chaotic behavior of spin-wave instabilities
over a wide region in the phase diagram of Fig. 1 using a
small modulation in the biasing magnetic field, not only
with a sinusoidal wave shape, but also with a square-
wave or pulse modulation. In some points of the h, vs

Ho diagram only a specific wave shape results in a con-
trolled signal, whereas in others they are all equally
eA'ective. In each case, however, the resulting periodic
signal has a diff'erent wave form, corresponding to a
diAerent trajectory. This confirms that by using a care-
fully chosen small parameter perturbation, it is possible
to control a chaotic trajectory and create a variety of at-
tracting periodic orbits, as proposed by Ott, Grebogi, and
Yorke. '
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