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Propagation of Target Waves in the Presence of Obstacles
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The propagation of target waves in the presence of walls and windows is considered. It is shown that
in a finite system, for sufficiently small passages no target waves are triggered. Propagation through a
large opening can inhibit the onset of waves from smaller windows.

PACS numbers: 42.20.—y, 03.40.Kf

Concentric waves of chemical activity have been ob-
served in reacting systems as well as in other media. The
theoretical aspect of the problem has also drawn much
attention from researchers in diverse fields. ' In this pa-
per we report numerical simulations of target waves in a
reaction-diffusion medium where a partition is intro-
duced in the system. Two openings of various size insure
the communication between the two compartments. In
such an environment, target waves show some unexpect-
ed behavior which is the object of this Letter.

The reaction is assumed to proceed in a two-
dimensional square vessel in the presence of diffusion.
The compartment walls are subject to "no-fIux" bound-
ary conditions. The general equation describing this sys-
tem is

=F(x)+Dv'x,

where X(r, t) is a vector representing the concentration
variables and D is the diffusion matrix taken here to be a
multiple of the identity matrix.

It is assumed that the reaction kinetics is such that for
a range of parameter values a supercritical Hopf bifurca-
tion leading to bulk oscillations takes place. Near the in-

stability point, such a system may be reduced to a
Ginzburg-Landau-type equation which characterizes the
behavior of the slowly varying complex amplitude
A (p, z) defined as

bifurcation, we have p and g„&O. With the help of the
amplitude equation (3), one shows that to the lowest or-
der in e, the bulk frequency of the homogeneous oscilla-
tion of concentrations X is I =coo —epg;/g„. When the
nonlinear dispersion g; is normal, i.e., when the period of
the oscillations increases with the amplitude, then g; & 0.

We first study the events in the compartment I when
only one window is considered [Figs. 1(a) and I(b)]. In
the system described by Eq. (2), target waves may be
generated around centers by introducing in the system
local inhomogeneities that we shall call pacemaker
centers. First, traveling waves are generated under the
action of a small local fluctuation in the concentration
variable. The waves generated by such a mechanism
have a tendency to vanish after some time.

Target waves also appear if the parameters of the
pacemaker region are slightly different from the remain-
ing part of the medium. In this paper the waves were

X —Xo =pe'~ A (p, z)e'"' +c.c. , (2)

where Xo describes the concentration values of a steady
solution of Eq. (1) which has become unstable via the
Hopf bifurcation and ( is the critical mode, i.e. , the
eigenvector related to the eigenvalue igloo of the Jacobian
matrix of F computed at Xo. The small parameter e«1
is a measure of the distance from the bifurcation point
and the coinplex field A (p, z) evolves on the slow time
scale z=er and on the large length scale p=(e/D) '~ r.
In the postcritical regime Eq. (1) gives

=@A —(g„+ig;) ~A ~
A+V A .

The real constants g„,g;, and p can be related to the
parameters of the model. In the case of a supercritical

FIG. l. (a), (b) A square vessel of side L is partitioned by a
wall and communicates through a window of size l. A pace-
maker region at P, where frequency is locally increased by h, co,

generates target waves in compartment I, with a frequency Ql.
(a) The size of the window is 2l, and in compartment II waves
can propagate at the same frequency as in compartment I. (b)
The size of the window is —', I,. No target waves are seen in

compartment II for finite-size systems. The parameters of Eq.
(4) are P= 1, hco= l. The critical window length is 1, =5.03 in

units of the nondimensional space variable p'. The discretiza-
tion of the vessel of side L =44.8 is 80x80. The pacemaker at
P is "T shaped, " built on sixteen adjacent cells. The width of
the wall is 1.12.
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generated by a local frequency shift h, co between the
pacemaker region and the bulk. This center initiates tar-
get waves in the system which again propagate in con-
centric rings starting from the pacemaker center and
gradua11y take over the entire vessel.

A practical way to describe the action of the pacemak-
er is to introduce a new term into Eq. (3):

,
= [1+f~~(p')]z —(1+EP)iz i'z+ v'z (4)

and

& =(pig, )'"'Z, p=glg. , r'=or, p'=u'"p,

where Aco(p') takes a nonzero constant value only in the
small region defining the pacemaker. Several shapes of
the pacemaker were considered and the same qualitative
results were obtained.

To perform numerical simulations of the partial
differential equation (4), we divide the vessel into a net-
work of Axe cells. In this network, the Laplacian
operator V, as well as the zero-flux boundary conditions,
may be approximated by finite diff'erences. It leads to a
large system of coupled ordinary diff'erential equations
which can be integrated numerically by classical
methods. We used a Runge-Kutta scheme, with a con-
trolled time step. ' For most of the simulations in this

paper the grid size was 80x80. However, a system of
40x40 gave qualitatively the same results. On the other
hand, a grid of 160& 160 showed quantitatively
equivalent results to the 80x 80 system within an error of
10%.

Numerical simulations of Eq. (4) show that when

h, m=0, whatever the initial conditions, the asymptotic
solution for Z is the homogeneous oscillation at frequen-

cy Oa= —p. However, when hco&0, target waves with
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FIG. 2. Variation of the frequency 0 as a function of the lo-

cal frequency shift h, m. Here the grid size is 40x 40, except for
+ corresponding to a grid of 80x 80. The other parameters are
as in Fig. l.

frequency Q & Qo are generated continuously under the
influence of the pacemaker. These waves constitute a
frequency-locked solution of Eq. (4) in compartment I.
The relation between the frequency 0, of these concen-
tric waves and the frequency shift Aco of the pacemaker
has been studied analytically by Hagan in the frame-
work of the phase equation. Our simulations reported in

Fig. 2 show that 0 is a highly nonlinear function of h, co,

which exhibits a maximum for a given value of h,e, and
decreases for h, m & h, m„.

We also considered the case in which in compartment
I two simultaneous pacemaker regions, with the same
spatial extension and with different frequency shifts
h, mi & Am2, were active. Target waves start to propagate
from both centers, but after a while one sees that one of
the centers remains active while the second one is
prevented from emitting waves. The center which wins
the competition is the one whose frequency 0 is the larg-
est, as was predicted previously. It is interesting to
note that although h, mi & h, m2, because of the decreasing
part of the function depicted in Fig. 2, target waves with
a frequency A(ecol) can be seen in the system if Ace| is
closer to Am„ than h, m2.

Let us follow the events in compartment II. As a first
simulation we consider a partition between the compart-
ments with a single window size l taken as a control pa-
rameter. In this and in the three subsequent experi-
ments, a single pacemaker region at point P is con-
sidered. When the first front starting from P in com-
partment I reaches the window, it generates a new set of
similar target waves in compartment II. We want to
know if the frequency of the waves in compartment II
will lock onto the frequency A& of the waves produced in

compartment I. The simulations show that the frequen-
cy locking disappears when l is decreased below a critical
value I,.

Let us measure the phase diA'erence p2
—pi between

the two oscillators of compartments II and I. For a win-

dow length of I &I„this phase difference tends to a sta-
tionary state p; therefore, in this case, frequency locking
between the two compartments occurs [Fig. 1(a)]. How-
ever, as the size of the window l decreases, the stationary
state p tends to a limit point and the frequency-locked
solution disappears at l, [see Fig. 3(b)]. Below this
value, a quasiperiodic solution is seen in the vicinity of
the opening, and in compartment II, target waves propa-
gate with a lower-frequency 0» compared to Q~ in com-
partment I [Fig. 1(b)].

In order to understand better the behavior of the sys-
tem in the vicinity of the opening and in the second com-
partment, for I &I„it is convenient to perform the
change of variable Z (p', r') = Y(p', r') exp(i 0 i r'). En

terms of the variable Y, the frequency-locked solution
which exists for I & l, appears as an inhomogeneous
steady state Y= Y, of Eq. (4). However, for a smaller
window, l &l„the steady state Y, disappears in the
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FIG 3 (a) Period T of I (I', r') ln compartment II as a function of the window size l. (h) Steady-state values of the phase
diAerence p as a function of l, for frequency-locked solutions. The parameters are the same as in Fig. l.

second compartment and the dynamics of Y becomes
periodic through an infinite-period bifurcation.

Figure 3(a) shows the relationship between the period
T of the variable Y and the bifurcation parameter l. A
curve fitting procedure on the numerical results indicates
that this relationship is in good agreement with the law

I, —I IX:exP( —XT) (5)

which is the signature of a saddle-loop infinite-period bi-
furcation where a limit cycle merges with an unstable
steady state.

Therefore, in the vicinity of the window, the dynamics
of Z becomes quasiperiodic when I & I„with indepen-
dent frequencies Qt and )e=2rr/T. Moreover, in com-
partment II one observes that when the distance from
the opening increases, Z follows periodic dynamics with

only one frequency Q&i = Q&
—y.

As l decreases, the wavelength of the target waves in

compartment II increases. Thus if the size of the vessel
is much smaller than the wavelength of the target waves,
one sees only a weak concentration gradient which is

only a fraction of the wavelength [Fig. 1(b)]. Therefore,
in a finite system, target patterns are not observed in

compartment II when the size I of the window becomes
too small. This results from the fact that the wavelength
is much larger than the size L of the system.

Let us now consider the same vessel and the same
chemical reactions as described above. We introduce
two openings ll and lz in the system [Figs. 4(a) and
4(b)]. Again a single local frequency shift hco is created
at point P. Target waves with frequency Ai start to
propagate in compartment I and reach successively the
two openings I ~ and I2. For h, m =3, the two windows act
as new pacemaker regions and generate in turn target
waves in the second compartment with Qll(ll) =Qll(l2)
=Qi. After a awhile, the target waves propagating from
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FIG. 4. Wave propagation in the presence of two windows.
Parameters are as in Fig. I, with ll =0.89l„ll= 1.l/, : (a)
Waves propagate into compartment II from both windows and
a cusplike structure is formed (arel =3). (h) Waves propagate
from the largest window and inhibit the propagation from the
small window (JIItu = I ).

the two centers collide and cusplike structures are
formed [Fig. 4(a)].

In the next experiment, we only decrease h, co at point
I'. A higher value of Qi, as compared with the preceding
case, is obtained in the first compartment for the propa-
gating target waves. In this experiment when the wave
front reaches the windows l l and lz, new fronts are again
generated. Ho~ever, very soon the waves emerging from
window lz take over the entire system and inhibit all
propagation from ll [Fig. 4(b)].

A tentative explanation of this phenomenon is as fol-
lows. In this case one observes that Qtl(ll) & Qll(lz)= Ai. We saw in a preceding paragraph that if two
pacemakers emit simultaneously, then the fastest waves
inhibit the slower propagation and take over the entire
system. As Qll(ll) ( Qlt(lz) it is reasonable to think
that a similar explanation prevails here. The frequency
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of the waves emerging from l2 is fastest and therefore
these waves take over the slowly evolving target waves
which emerge from I ~.

The simulation of other systems in the presence of
walls and windows shows that, for some pacemaker posi-
tions, spiral waves may appear in compartment II.

The behavior found in our simulations must be con-
trasted to the property of sound waves or electromagnet-
ic waves which in the experiment cited above would

propagate from both apertures, producing interference
eA'ects. No such interference phenomena are seen with
the target waves.

In a previous paper we discussed front propagation
into a uniform state unstable with respect to a supercriti-
cal Hopf bifurcation. ' It was shown that due to the ex-
istance of a phase gradient, target waves were generated
behind the front. According to the sign of P in the
Ginzburg-Landau equation (4), the waves and the front
travel in the same or in the opposite direction. In the
latter case one sees incoming target waves traveling to-
ward the pacemaker region. The incoming waves can
also be seen in the oscillatory media depicted in Figs. 1

and 4.
Let us note that another peculiarity of unstable media

is that, contrary to the oscillating systems described in

this paper, there is no critical window length for target-
wave propagation. As the medium is unstable, the small-
est perturbation may trigger wave trains in part II.

The intriguing properties of dynamical systems de-
scribed in this paper, in the case of continuous systems,
may be also seen in networks of coupled oscillators.
They can be used as analogical representations for solv-

ing specific problems encountered in artificial intelli-
gence. ' '
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