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Analytical Solution for a Yukawa-Type Potential

S. L. Garavelli'” and F. A. Oliveira>®
W International Centre of Condensed Matter Physics, 70919 Brasilia, D.F., Brazil
and Departamento de Fisica, Universidade de Brasilia, Brasilia, D.F., Brazil

@ physics Department, Case Western Reserve University, Cleveland, Ohio 44106
(Received 21 August 1990)

We use an iterative process to get an analytical solution for a screened Thomas-Fermi (Yukawa) po-
tential. The analytical solution is not exact, but the result agrees with the best variational and numerical
integration results. The critical Thomas-Fermi wave vector g. above which there is no bound state is ob-
tained within 0.03% accuracy. We also show that the critical effective charge vanishes.
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Since the pioneering work of Yukawa' the potential

V(r)=—(A/r)exp(—gqr) (1

has been extensively investigated in the literature. In
plasma physics it is known as the Debye-Hiickel poten-
tial and in solid-state physics as the Thomas-Fermi
potential. In both cases this potential arises from a
screened Coulomb potential. Thus, 4 = —e?, but g, the
Thomas-Fermi wave vector, is given by different expres-
sions, depending on the problem under consideration.?

The problem of finding an accurate solution for the
screened Coulomb potential, Eq. (1), has received a lot
of attention in the literature.>'® The screened potential
is also relevant in the study of hydrogen under pres-
sure.!'"!* In such a problem it is desirable to have a well
determined solution for the ground-state energy as a
function of the screened Thomas-Fermi wave vector, i.e.,
E=E(q).

In this work we use an iterative process to solve the
Schrédinger equation in the momentum space. This
scheme gives a recurrence relation which lends itself to
an analytical approximate solution. We also obtain ana-
lytical expressions for the critical parameters.

We start out with the Schrodinger equation in the
momentum space,

J 52t —p)dp', @
where y(p) is the wave function in p space and v(p) is
the Fourier transform of the potential V' (r).

We shall use an iterative process to solve Eq. (2). We
associate an index n (n=1,2,3,...) to each quantity in-
volved in each order of iteration. First we use a starting
wave function for the ground state,

x(p)=B/(p*+af)?,

2
() =—2—
R
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which is the solution of the unscreened (g =0) hydrogen
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atom, with a;=(—2E )2, and B,=Qa;)*?a/x as a
normalization constant. We shall assume that for all or-
ders of iteration the energy takes the form

n=_-%a3~ (4)

We now use the wave function (3) on the right-hand side
of Eq. (2) to obtain

B,

()= , (%)
T e p D)
where y, =g+ a;. By iterating again we get
B} 1 (y2—ax)p
23(p) =—5—=-<{ —arctan——-"— 6)
3P (p2+ai) {P pty3
with
ri=(n+g)(ar+q). (7

For most cases of interest we can replace the arctan by
its argument, so that Eq. (6) can be approximated by

B;
(p*+ad)(p*+y3)
Notice that the form of the wave function is not changed

as the order of iteration increases. This suggests that at
order n the wave function can be readily expressed as

x(p)= 8)

wp)= (p2+a3?zp2+73) ’ ©
with

yi=(yp—1+q) a,—1+q), (10)
and

By =1anyn(an+v.) 3 3/r. an

Observe that by setting y; =a;, and using Egs. (9) and
(10), we reproduce all the previous relations [except Eq.
(6)]. We use Eq. (9) to obtain the energy and

(12)
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where in the last step we have used Eq. (4). For a given
g, Egs. (10) and (12) establish a closed system of re-
currence relations for the energy. Even though after a
few iterations this relation converges to fixed a and 7, an
analytical result is obtained by making n— oo, y,— 7,
a,— a, and E,— E. Then,

y={g+a+llg+a)(59+a)13/2, 13)
_ 4(at+y) (2a+q)Q2y+q)
=— + 4
¢ y{l (y—a)? (a+y+g)? ’ 4
and
_ B
e YR (1)

The above equations (13) and (14) yield a=a(g) and
E =E(g). There are no adjustable parameters, and con-
sequently they represent a simple, yet accurate analytical
solution.

We now consider the inverse Fourier transform of Eq.

19),
1—e ™™
Ar ’

where A =y — a is the “screening parameter.” Note that
for small values of r, i.e., Ar <1, the screening is not
effective and w(r) behaves as in the hydrogen atom, as
expected. The screening parameter A turns out to be as
important as the effective charge a. From now on we
shall use the screening parameter A instead of y since it
has more physical meaning. For A— 0, i.e,, y— a, we

vw(r)=e _‘"[ (16)

J

2a+4q)2r+2a+q)

obtain
1 5 4¢3
E=—a’——F—,

2 Qa+qg)?
which reproduces the energy obtained with the wave
function Eq. (3), which corresponds to first-order pertur-
bation theory.3

In the limit £— 0, Egs. (13) and (14) yield the criti-
cal parameters

an

a.=0, (18)

Ae=4Inp=1.924847, (19)
and

qc=A:/p=1.189621 . (20)

Here p=7v./q.=(/5+1)/2. These are very important
results: The above equations give explicit analytical ex-
pressions for the critical effective charge a., the critical
screening parameter A., and the critical Thomas-Fermi
wave vector ¢.. Equation (18) shows that the effective
nuclear charge is null for no binding energy. This makes
more sense than the finite value of a obtained in the
literature (see, e.g., Refs. 3 and 4, and also our Figs. 2
and 3). This is the expected trend of a Mott-type transi-
tion in a metal. The screening parameter A has no cor-
respondent in the literature. Finally, our g, agrees with
the best numerical value in the literature (see Table II).
Whereas other authors determine ¢. by numerical
methods, our method has the advantage of determining
q. analytically.

In order to test our analytical result, we shall use Eq.
(16) as a trial variational function with a and A regarded
now as free parameters. The ground-state energy with
respect to that variational wave function is given by

1

E(a,x)=%a(x+a){1+ 40+2a) | [

The energy obtained from the variational conditions is
similar to that obtained by the analytical procedure. In
Fig. 1 we plot the energy as a function of the Thomas-
Fermi wave vector q. Curve 1 is the variational energy
obtained with the 1s wave function [Eq. (17), plotted
here as a referencel. Curve 2 is the analytical result,
while curve 3 is the result of the variational calculation
[Eq. (21)]. There is no discernible difference between
them, in spite of the fact that there exist some differ-
ences between the ¢ and A computed by the two methods
(see Fig. 2). In Table I we display the energy for some
values of g. For 0 <g =<1, our results agree with those
of Rogers, Graboske, and Harwood® and of Harris* with
an error which is far less than 1%. For 1.0 <g <gq,, tak-
ing the variational result as standard, we see that our er-
ror in the analytical energy is less than that of Harris, in
which there are three adjustable coefficients and three
adjustable charges. In Fig. 2 we show the parameters a
and A as a function of g. Curve 1 shows a for the ls

wave function. Observe that for E— 0, a=+. Curves

(A +2a+qg)?

I

Energy (Hartree)

-0.5

FIG. 1. Energy vs Thomas-Fermi wave vector g. Curve 1,
variational hydrogenic function; curve 2, analytical result; and
curve 3, variational with screening.
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TABLE I. Ground-state energy (10 ~3 hartree) vs g as com-
puted by various authors. E|s: variational result with hydro-
genic wave function. Ey (Harris): combination of atomic or-
bitals, with three adjustable coefficients and three adjustable
charges; Ergu (Rogers, Graboske, and Harwood): numerical
integration; E4: our analytical result; and Ey: our variational
result.

Energy E\, En ERrGH E. Ey
q

0 500 500 500 500 500
0.1 407.5 s 407.5 407.6 407.6
0.2 326.73 cee 326.8 326.80 326.81
0.25 290.75 290.92 290.9 290.91 290.92
0.5 146.51 148.12 148.1 148.07 148.11
0.8 38.471 44.70 44.623 44.679
1.0 0 10.225 10.285 10.217 10.261
1.05 s 5.455 5.4952 5.5306
1.1 2.115 2.2464 2.2715

2 and 3 are, respectively, a and A from the analytical cal-
culation, while curves 5 and 4 are, respectively, ¢ and A
from the variational calculation. We notice that both
curves 2 and 5 predict a.— 0 as E— 0. This shows that
the electrons with no binding energy see a null effective
nuclear charge. These results are very distinct from
those obtained by combining atomic wave functions,*
where the effective charge never vanishes. Nevertheless,
when the number of atomic orbitals is increased, the crit-
ical wave vector g, increases while the effective charge a
decreases. Hence we may expect that an infinite number
of atomic orbitals might eventually produce a.=0. For
qg— 0, we see that a— 1, as expected, and the screening
parameter A— 0. For small g, X is proportional to g. In
general, A is an increasing function of g, as expected.

In the limit £— O the variational condition together
with Eq. (21) gives a.=0, A.=1.826992, and gq.
=1.190213. Even though A, has a difference of 5% in
relation to the analytical one (given by Eq. (19)], the
difference in gq. is only 0.03%. In Table II we compare
our results with other authors.

The behavior of a and A near g, is given by

a=p(1—q/q.), (22)
and

E=1—=nhr.=p(1—g/q.). (23)

Oefe—n

10 q
FIG. 2. The screening parameter A and the effective charge
a vs g. Curve 1, variational hydrogenic; curve 2, a analytical;

curve 3, A analytical; curve 4, A variational; and curve 5, a vari-
ational.

Here B; and B, are numerical coefficients which can be
obtained with the help of Egs. (13) and (14) (analytical
case) or from the variational condition. The coefficients
are different, but the “critical behavior” follows the same
law (that is not the case of the 1s wave function where
a— 5 when E— 0). In Fig. 3 we show the behavior of
a and & near the critical point. To our knowledge, there
is not any study on the critical behavior for this problem
in the literature. However, we find it very instructive to
compare our analytical result with our variational calcu-
lation.

In conclusion, by using a recurrence method, we ob-
tained an analytical expression for the ground state of a
screened Yukawa potential. The recurrence relation ob-
tained is such that the energy and wave function ob-
tained improve at each iteration. We end up with the
wave function, Eq. (16), and an analytical expression for
the energy with no adjustable parameters. Conversely,
by using the analytic form obtained from the iterative
procedure, with @ and A now regarded as variational pa-
rameters, we have shown that the wave function obtained
is a good variational one, and both results are in good
agreement with the best result found in the literature.
We hope this is a step in the direction of an exact solu-
tion to the problem.

TABLE I1. Critical g. for the ground state as calculated by various authors. gs (Smith):
perturbation theory; gsc (Sachs and Goeppert-Mayer): numerical methods; gu. (Hulthén and
Laurikainen): variational; gim (Lovelace and Masson): Regge trajectories; gss (Schey and
Schwartz): technique for counting the bound states as a function of g. Others as in Table I.

qs qis gsG gHL qim

qH gss gRGH qa qv

0998 1.0 1.1884 1.1906 1.20105

1.149  1.1905

1.1906 1.18962 1.190213
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FIG. 3. Critical behavior of @ and £€=1—i/A, vs n=1

—q/q.. Curve 1, a analytical; curve 2, £ analytical; curve 3, a
variational; and curve 4, £ variational.
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