
VOLUME 66, NUMBER 2 PHYSICAL REVIEW LETTERS 14 JANUARY 1991

Wess-Zumino Term for Chiral Bosons
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We derive the Wess-Zumino term for the chiral-boson model formulated by Sonnenschein using an
iterative process, previously introduced by the author in the context of the chiral Schwinger model, that
transforms the second-class chiral constraints into first-class ones. Because of the peculiar features of
this model the Wess-Zumino term found is made of an infinite number of terms, using an infinite num-
ber of auxiliary fields.
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Self-dual fields in two space-time dimensions, some-
times called chiral bosons, have received much attention
in the past few years, originally because of their major
role in the formulation of heterotic strings, ' and more re-
cently because of the observation by Wen that the gap-
less boundary excitations of a quantum Hall liquid, the
so-called "edge states, " form a representation of a chiral
Kac-Moody algebra. The existence of these excitations
is a characteristic property of the fractional-quantum-
Hall-effect states, which can be tested experimentally.
Subsequently Stone showed that these algebras may be
represented by chiral-bosonic fields describing fluctua-
tions in the shape of a two-dimensional electron gas,
called "ripplons. " Ripplons are the edge degree of free-
dom of a Chem-Sirnons action with dynamical fields.
An interesting interface between solid-state and particle
physics is bringing all those beautiful mathematical con-
structions of string theory into the reach of experimental
investigation, in the domain of the quantum Hall effect.
For example, the central charges of Kac-Moody algebras
are related to the electric charge of the edge excitations,
while the unidirectional motion of the edge states pro-
vides a concrete realization of heterotic strings.

However, the quantization of these fundamental ob-
jects has been beset with notorious di%culties in the La-
grangian formulation, while the left- or right-moving
scalar fields are easily described in the Hamiltonian
language. The usual route has been to start with a La-
grangian for a scalar field and project out the undesired
component by means of chiral constraints 8+ p = 0,
which actually only serves to complicate matters. In or-
der for the Lagrangian multiplier not to become dynami-
cal, one needs the constraint to be first class, which is
hardly the case here. To circumvent these problems two
proposals for the construction of chiral bosons appeared.
First, Siegel proposed to set one of the components of
the energy-momentum tensor to zero, resulting in an ac-
tion with the second-class chiral constraints squared,
which has a gauge symmetry, called "Siegel's symme-
try. " However, since the (squared) constraint is propor-
tional to the ( ——) component of the energy-mo-

mentum tensor, Siegel's symmetry becomes anomalous
at the quantum level on account of the central extension
of the algebra of these objects. Therefore the constraint
becomes second class again after quantization. To fix
this, it has been suggested to use 26 chiral bosons or to
include a compensator Liouville action" which cancels
the anomaly. This scheme, however, has failed to give
the correct gravitational anomaly when coupled to gravi-
ty. The second approach suggests the use of Dirac
brackets to deal with the second-class nature of the con-
straint. Following this approach, Srivastava showed
that the use of a linear constraint does not render the
Lagrange multiplier dynamical but his solution has been
criticized by Harada ' as violating unitarity.
Meanwhile, Floreanini and Jackiw'' offered a solution
for a single self-dual field in three different ways: by a
nonlocal Lagrangian in terms of local fields, by a local
Lagrangian in terms of nonlocal fields, and by a local
Lagrangian described by local fields but which are of fer-
mionic character. Bernstein and Sonnenschein then
showed that Floreanini and Jackiw s solution is equiv-
alent to Siegel's action.

Sonnenschein' proposed a non-Abelian generalization
for the chiral bosons. To work in this extended scenario
before specializing to the Abelian case is indeed the best
approach to understand the physics of this system. This
model does not suffer from any obstruction to quantiza-
tion, such as the gravitational anomaly, has the correct
equations of motion, and only one Kac-Moody algebra. '

A geometrical construction of Sonnenschein's chiral bo-
son has been offered by Stone. ' In this Letter we will

follow Stone's route to construct the U(1) version of
Sonnenschein's chiral boson. The resulting action is

singular and has a second-class primary chir al con-
straint. ' In order to reestablish the gauge symmetry we

apply an algorithm developed earlier by the present au-
thor, ' in the context of the chiral Schwinger model.
The basic idea there was the introduction of appropriat-
ed counterterms into the action which turns the con-
straints first class. In the eventuality that new second-
class constraints (called virtuals) appear during this pro-
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cess one has to repeat the operation, as many times as
necessary, until the set of constraints is rendered first
class. As we are going to show below, for the case of
Sonnenschein chiral boson this loop process never ends
and as a result the Wess-Zumino term for this model
contains an infinite number of terms, described by an
infinite number of auxiliary Wess-Zumino fields. The
reason for this peculiar behavior lies in the fact that each
time a counterterm is introduced to turn the set of con-
straints first class, a new virtual constraint is generated,
which is an exact copy of the original second-class one.
Because of this viral-like constraint replication one can-
not stop the constraint's conversion process at any finite
step. However, with the inclusion of the "final" Wess-
Zumino term, the constraint's set is first class and quan-
tization can be achieved by the usual means, as, for ex-
ample, using the formalism developed by Batalin, Frad-
kin, and Vilkovisky, ' as will be mentioned later.

In fact, the simplest route to chiral bosonization is
through the quantum-mechanical concept of coherent-
state path integrals. These can be achieved starting with
an irreducible representation D(g) of some continuous
group G. A collection of generalized coherent states, la-
beled by g 6 6, is

~g& =D(g) ~0&,

where ~0) is the highest-weight state. Because of the ir-
reducibility of the representation, Schur's lemma shows
that these states satisfy an (over)completeness relation.
One then uses the overcompleteness property of these
states to give a path-integral representation for the vacu-
um persistence amplitude

tion under the transformation g gh, where h C H
leaves ~0) fixed up to a phase, which reduces the phase
space to the coset space G~H. H is called the isotropy
group of ~0). Specializing to an Abelian U(l) group
where g(x, t) =e' ",we find the action

fll

S(8) = — d'xN8„8)'+8 89iei.

The corresponding equation of motion is

8, (8, +ri, )8=0

and the solution is

(7)

e(x, r) =e, (x r)+—e, (r) .

where sr= BL/be, w—hich does not commute with itself (at
the Poisson-bracket level),

The reader will certainly notice the similar form of this
action with that in Floreanini and Jackiw's formulation
for the chir al boson. There is, though, a crucial
diAerence. The field 0 here is a canonical scalar field
while Floreanini and Jackiw used just one of its chiral
components, being therefore nonlocal in nature, which
clearly explains the curious commutation relation intro-
duced by them in order to solve the model. Because of
this difference the causality problems pointed out by
Girotti et aI. ' in the Floreanini-Jackiw formulation do
not apply here.

The Lagrangian Lp defined by (6) is singular and has
one second-class, primary constraint '

n =~ —a„e,

Z T (
—iiH) (2) fn(x), n(y)f = —2tl„8(x —y) . (io)

by repeatedly inserting the resolution of the identity into
(2). Following Stone' one finds that the action in the
path integral is given by

In order to convert this constraint to first class we use
the algorithm proposed in Ref. 16. It is simple to see
that the modified Lagrangian

S(g) = — d'xtr(g 't) g)'1

4~~

+ d'xdztr[g 'B,g8„(g 'Bg)],2z" (3)

L,,—I. , =I..+a.e, a, e, —2a, e.a„e,

will produce a pair of primary constraints,

n ~ np =7zp B~ep+28xel,
where we have extended the group functions g(x, r) to
g(x, t, z) defined in the interior of a region bounded by
the two-dimensional space-time. The classical equation
of motion is

6, (g '6 g+g 'B,g) =0,
whose solution reads

g(x, r) =gl(x —r)g2(r)

with g2(t) an arbitrary group-valued function depending
on time only. These solutions look like right-going
waves, but in addition to that there is a hidden gauge
symmetry which manifests itself in the factor gz(t).
This symmetry has its origin in the invariance of the ac-
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&2 =~x~O. (i 4)

n) =el —|) 8, .

Here we have relabeled the original field 0 Oo, etc. ,
and introduced a Wess-Zumino auxiliary field 0~. One
can check that the matrix

c;, =In;, n, }

has detC=O, signaling the first-class nature of the set
[n;, i =1,2). The trouble now is that this set of con-
straints needs an extra secondary constraint to maintain
the stability of the constraint hypersurface under time
evolution, which is
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The solution is then to apply the same medication again.
As before the introduction of a counterterm, along with
an extra field 02, will fix the problem with A2 but a new

constraint will show up, and so on. After repeating this
process N times one finds the expression for the La-
grangian

Llv I w —1+1CT
(w)

where I.tIT is the level-1V counterterm given by

JV —
1

LP,'=a, e a„e —2a, e g ( —i)"' a, e, .
k=0

(15)

The system now has the following set of constraints:

IIm &m ax em

—2 g ( —1) + a ek, m=O, . . . , N,
k =m+1

IIIv+ I axep ~

(Is)

The last constraint Q&+~ will always destroy the first-
class nature of the set [II;, i =0, . . . ,+ and consequent-
ly one has no right to stop the loop process at any finite
step. The Wess-Zumino term for the Abelian version of
Sonnenschein's chiral boson is obtained from (17) by
taking the limit N ~. The equation of motion for the
chiral boson 00 becomes

a (a.+a, )co=a a, (el+ +ejv), (19)

awhile all the Ness-Zumino auxiliary fields have identical
equations, given by

a, a, (e, + +e~) =a.a, e. . (20)

Observe that substituting (20) into (19) just gives us

back the last constraint, which shows that only by mak-
ing it disappear do we recover 00 as the right-moving de-
gree of freedom that we started with. This is achieved,
as already mentioned, only with the introduction of an
infinite number of counterterms.

Before concluding we would like to comment on the
covariant quantization of our model, described by Eq.
(17), which is presently under way. ' To this end one
can use the Batalin-Fradkin-Vilkovisky approach. ' One
then extends the phase space by incorporating the
(infinite) constraints by means of infinite Lagrange mul-
tipliers and their conjugated momenta, as well as a set of
infinite ghost fields of appropriate statistics. The con-

The total Wess-Zumino term up to this level is given by
the sum of all counterterms,

N

Lwz = Z LFT'
m=1

N m —
1

a, e a.e —2a, e g ( —I)"-a,e,
m=1

(i7)

struction of the extended action and the Becchi-Rouet-
Stora-Tyutin (BRST) charge then follows the usual re-
cipe given by the authors of Ref. 17, after a straightfor-
ward redefinition of the existing constraints in order to
close the algebra of these objects. The analyses of the
physical subspace generated by the application of the nil-
potent BRST charge over the vacuum show the existence
of only one chiral excitation, as one should expect.

In conclusion, we have derived the Wess-Zumino term
for the U(1) Abelian version of Sonnenschein's chiral-
boson model, making use of an iterative process which
turns the original second-class constraint into a first-class
one, with the introduction of appropriate counterterms.
We found that it became necessary to introduce an
infinite number of such counterterms to obtain the
desired result. To include many chiral bosons into this
scheme is straightforward. As discussed in the introduc-
tion, the gauge invariance of our chiral boson makes it a
natural candidate to describe the edge excitations of
quantum Hall liquids and should be of importance for
the bosonic heterotic-string program. It would be in-
teresting to examine if the coupling of this model to
two-dimensional gravity will produce the same gravita-
tional anomaly as that generated by Weyl fermions.
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