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The collective excitations of the fractional-quantum-Hall liquid are studied within the Ginzburg-
Landau theory. We show that (1) Gaussian fluctuations of the phase of the order parameter correspond
to the cyclotron mode with an energy gap of Am, at q =0 and a contribution to the static structure fac-
tor proportional to ~gq as q 0, in accordance with Kohn's theorem, and (2) vortex-antivortex fluctua-
tions give rise to the lowest-Landau-level collective mode with an energy gap that depends only on the
Coulomb energy and a static structure factor that vanishes as ~qg as q 0.

PACS numbers: 73.50.Jt, 05.30.—d, 74.20.—z

In their seminal works, Girvin and MacBonald' and
Read discovered a hidden order parameter in the
Laughlin state. They have shown that if one views an
electron as a hardcore boson with an odd-integer number
of Dirac flux quanta attached, the equal-time boson-
boson correlation function acquires long-range behavior
in the Laughlin state. Subsequently, Zhang, Hansson,
and Kivelson and Read constructed a Ginzburg-
Landau (GL) theory for the fractional quantum Hall
effect (FQHE). It was shown that all the essential
features of the FQHE can be derived from the GL
theory by looking at the saddle-point solution and the
Gaussian fluctuation around it. These successes certain-
ly make the GL approach extremely appealing. Howev-
er, the GL theory is also faced with some serious prob-
lems (in the following we shall focus our discussion on
Ref. 4): (1) The GL theory predicts the wrong gap for
collective excitations at long wavelength; (2) the static
structure factor computed in this theory vanishes like

~gq, not like ~gq as obtained from a variational ap-
proach; and (3) it fails to explain the existence of the
"roton minimum" in the dispersion of the collective exci-
tation s.

In general, there are two types of collective excitations
at fractional filling factors: One is the cyclotron-
resonance mode of the center of mass, which can be
viewed as an inter-Landau-level particle-hole excitation,
and the other is the intra-Landau-level excitations. On
the one hand, by invoking Galilean invariance, Kohn's
theorem shows that the frequency of the first mode is
exactly Am, at q =0 and has an oscillator strength in the
static structure factor that vanishes as ~gq in the long-
wavelength limit. On the other hand, the frequency of
the second mode is solely determined by the Coulomb in-
teraction, and at the magic filling factors of the FQHE it
gives rise to a correction to the static structure factor

proportional to ~gq in the long-wavelength limit. Fol-
lowing Girvin, MacDonald, and Platzman (GMP), we
shall call the intra-Landau-level collective mode the
single-mode-approximation (SMA) mode. As shown by
GMP, the dispersion of the SMA mode displays a mag-
netoroton minimum at a wavelength roughly equal to the
interparticle distance.

In this Letter, we reexamine the problem associated
with the collective excitations in the GL theory. Here
we summarize our main results as follows. Following
Ref. 4, we transform the original fermionic problem into
a bosonic problem by introducing a statistical gauge field
that has a Chem-Simons action. We then perform a du-
ality transformation, and arrive at an action containing
both the Gaussian phase and the vortex degrees of free-
dom. We first show that the Gaussian-phase fluctuation
at q =0 corresponds to the center-of-mass cyclotron
mode with an energy gap of hco, . At small ~gq, its con-
tribution to the static structure factor vanishes as ~gq

We then integrate out the Gaussian degrees of freedom
and obtain an effective action for the vortices. This
effective action describes anyonlike vortices that interact
via the Coulomb interaction and obey the guiding-center
equations of motion. We then quantize this anyon prob-
lem and show that both the net vorticity and the total di-
pole moment of the vortices are conserved. These con-
servation laws state that only quadrupole (and higher)
moment fluctuations can contribute to the long-
wavelength dynamical structure factor S(q, co), which
leads to a static structure factor proportional to ~gq as

q 0. We also show that the creation energy h, of the
vortices is determined purely by the Coulomb interac-
tion, and predict the SMA dispersion relation for large
~gq. We also present a physical picture that explains the
existence of the magnetoroton minimum.

We start with the GL Lagrangian (in units in which
c =h =e =1) written in Euclidean space-time:
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where cr„~ =1/k with k being an odd integer, and A=(Ho/2)(xy —yx) with Ho being the external magnetic field. We
have also defined A and A as a three-vector and a two-vector, respectively, p as the average particle density, V as the
two-body interaction, and

(0@—p) V(++ —p)—:„d r'[+(r )+(r ) —p] V(r —r ') [+(r ') +(r ') —p] .

The last term in (1) is the so-called Chem-Simons term; its effect is to attach Iluxes in a to particles. We then separate
the modulus and the phase degrees of freedom by writing +=p'~ p, where p—=e' is a unimodular field. Substituting
this back into (1) and performing a Hubbard-Stratonovich decoupling of the kinetic-energy term we obtain

X =i J p —./+a —A + lg'+ l&p'"I'+ 2 (p p) V(p —p) ——'o„~a.Vxa,
i 2p 2m 2

(2)

where J is the auxiliary field, and J=(p,J). Here we note that by differentiating (2) with respect to A we obtain J as
the physical three-current. To calculate the partition function, one has to perform path integrals over J, p, and p.

We split 0 into the topologically trivial and nontrivial parts via i'(v/i)Q=VOs+rii, , (V/i)i', „where 8~ is the topologi-
cally trivial Gaussian phase and p, , contains the vortex configurations. Of course, in order to have a well-defined +
field, p should vanish inside the cores of the vortices. We then integrate over Og which produces a constraint on J,
namely, V. J =0. We explicitly satisfy this constraint by writing J =Vxb (where b is an unconstrained field). Substi-
tuting this back into (2) and integrating out a we obtain

l(vxb) l'+ la(vxb), '"l'+ —,
' [(vxb), —p]V[(vxb) —p]+ib (J,, —VxA)+ b. Vxb.

2(Vxb)0 2m 20'xy
(3)

Here J,.:p, (v/i—)p, , is the v, ortex three-current and (Vxb)p and (Vxb)~ denote the time and space components of the
three-vector Vxb, respectively. Two observations should be made here: (1) V J,, =0 and (2) since the winding of p is

always an integer, J,, describes the three-current of integer-quantized point particles. These two facts enable us to write

p, , =P;q;8(r —r;) and J,, =P;q;r;8(r —r;), where q; is the integer vorticity.

Because of the fact that J = (V x b) &
=Ji (=z x b ) +J, ( = —z x t)b ii) (the first term is the longitudinal current and the

second term is the transverse current), it is particularly convenient to work in the Coulomb gauge (B.b=0) where

i/3
=

l Ji l
+

l J, l . By integrating out bo we obtain
r

lBbl + BG p, , + t'1x8b + la(a xb ) '~'l'
2(8xb ) m ~xy 2@i

+ —(6 x 6b )V(8 x Sb) + 6b x Sb+ i J, b —i A o'(8, x b ), (4)
2 2oxy

where G —= I/ling, and we have defined b=Bb+(b) with (b) = —,
'

p(xy —yx).
We first set J, ,40=0 and study the Gaussian fluctuations of b. The physical meaning of Bb becomes clear if we

define the displacement field u=pzxb'b. Substituting this expression into (4) and linearizing the result at long wave-

length we obtain
—2 —2

ply'= pro,'(t'1 u)G(8 u)+ p (tl. u)v(t'1 u)+ —' uxor.
2 2 2 2 Gxy

Here ro, —=p/mo ~ is the cyclotron frequency, and the
Coulomb-gauge constraint becomes Bxu=0, i.e., u de-
scribes purely longitudinal displacements. Let us first
consider the uniform displacement. In that case,
tlxu =0 is automatically satisfied; hence there is no fur-
ther constraint imposed on the uniform displacement.
The effective Lagrangian for that case describes the
motion of the center of mass and is given by X =(M/
2)lou +(i/2)Mro, uxu, where M= m fd rp is the total—
inertial mass of the fluid. This is precisely the Euclidean
space-time Lagrangian for a particle of mass M, coordi-
nate u, moving in an external magnetic field H=Mco, .
Such a Lagrangian implies cyclotron motion of the
center of mass with the cyclotron frequency equal to m, .

r

At nonzero wave vector, the term proportional to u x u in

(5) is ineffective due to the constraint tlxu=0. The
remaining eff'ective Lagrangian gives normal-mode dis-

persion co~—= co, +(p/m)le V(q). Hence for a short-

range two-body interaction V, the normal-mode frequen-

cy starts out from m=co, and disperses quadratically,
whereas if V(r) ix 1/r it disperses linearly, in agreement
with the random-phase-approximation calculation by
Kallin and Halperin. Next we calculate the dynamical
structure factor S(q, ro) due to this collective mode. To
do that we turn Ao back on and integrate out the dis-
placement field u. In the resulting action, —,

' S(q, co) is

the coefTicient of the Ao term. Explicit calculation of
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S(q, co) gives (after Wick s rotation) S(q, co) =p~gq /m(co —to~), which exhibits poles at co =toq and has an oscillator
strength that vanishes like ~gq as q~0, in accordance with Kohn s theorem. This mode has been mistaken in the
literature ' as the lowest-Landau-level collective mode. This misidentification is corrected by our results.

Now we restore the vortex degrees of freedom and study the efrects of vortex-antivortex fluctuation on the dynamical
structure factor. By assuming that the vortex motion is much slower than the cyclotron frequency, we integrate out Bb
in Eq. (4) to obtain

X = —iAop+ 2 AOSA0+ia„ygqjAo(rj)++A(qj)+

+—pgrj x r j —io„ygq;qjr; (z x t);)G(r; —rj),
2 j i &J

where A(qj), the quasiparticle (a quasiparticle is a vor-

tex plus a screening cloud produced by 8x Bb) creation
energy, is given by A(q)—= & jd r~ d r2V(rlq)g~(rl, rz),
in which gq (r 1,r2) = (8 x Sb (r 1 )8 x 8b (r2) ) is the pair-
distribution function in the presence of a vortex with vor-

ticity q situated at the origin. In this work knowing that
h(q) is determined solely by the interaction energy is

sufhcient.
Now we brieily'outline the steps leading from (4) to

(6). We first consider the case of a single static vortex.
Because of the nonlinearity of Eq. (4) and the constraint
Bxb) 0, brute-force integration over 8b is formidable.
What we have done instead are the following: (1) recog-
nize that Eq. (4) is the action for a problem of a long-
range interacting boson in the presence of an impurity;
(2) write down the corresponding Hamiltonian; (3)
show that the modulus of the Laughlin quasihole wave
function is the ground state of H~g, the part of Hamil-
tonian that is proportional to l/m, and the associated
eigenenergy is Nhco, /2, where N is the total number of
particles; and (4) compute 4(+ I) and show that the to-
tal induced charge in the vicinity of the vortex is +cr„~.
The situation is more complicated with an antivortex.
This is because in order to diagonalize H~j~ and main-
tain the eigenenergy as N h to, /2 a localized vortex-
antivortex cloud is induced. However, in regions of
space far away from the antivortex, p, , is well approxi-
mated by a 6' function and the asymptotic form of the
wave function can be written down easily. Fortunately,
knowing the asymptotic wave function is suflicient to
show that the total induced charge is —o,y. Finally, (5)
by considering far separated multivortex configurations
and allowing the vortices to move adiabatically, we can
show that Eq. (6) yields the action for the path integral
for the vortices.

2 rrxyZq~qjV(ri rj)
i&j

(6)

The last term in Eq. (6) describes the Berry phase that
vortices experience when they move around each other;
hence it describes quasiparticles carrying a fraction
(cr,y) of charge with a„y statistics moving in external
magnetic field p, i.e., Laughlin quasiparticles. The goal
now is to integrate out the vortex degrees of freedom to
obtain the correction to the dynamical structure factor
due to the quasiparticles. To do that, it is most con-
venient to write down the corresponding quantum-
mechanical description of the vortices. ' Equation (6)
can also be vie~ed as the coherent-state path-integral
representation of the following quantum Hamiltonian:

H =
2 0'xy g q|qj V (xi,pj ),

I+@
(7)

p;= qjyj
—oxy~q~qk G(rjk).

kwj

Although the relation between pj and y~ is complicated,
the Heisenberg equation of motion for r; is simple and is

given by p rj =o y(zx8j)+k~jqk V(rj&), the same as the
Euler-Lagrangian equation derived from (6). This equa-
tion of motion enables a direct analysis of the behavior of
the structure factor in the q~ 0 limit. For small ~gq, the
vortex density operator p, , (q) =Pjqje' "' can be ex-
panded in powers of q. The density-density correlation
function after this expansion is given by

with the commutation relation [x;,pj] =ib;j. Here V.
' is

a normal-ordered operator (normal ordered according to
the creation and destruction operators constructed from
x and p) such that

V'(x;,p;) ~, =V(x; —x,y; —y. ),
where evaluation is at

2

(p, , (q, t)p, , ( —q, 0)) =(Q(t)Q(0))+ —,
' ~gq'(D(t). D(0))+g (Q'~(t)Q'~(0))+

a,P
(9)

where Q—=P;q; is the net vorticity, D=P;q;r; is the total dipole moment, and Q'~= P;q;r r~ is the total —quadrupole
moment (a,P =x,y refer to the space indices). Since the Heisenberg equations of motion explicitly conserve both Q and
D, the first two contributions in (9) vanish identically. This result establishes the fact that the vortex contributions to
the dynamical structure factor vanish like ~gq in the q 0 limit.

Finally, we should like to address the issue associated with the dispersion of the SMA mode. First we consider the
case of large momentum. It is useful to gain some intuition by looking at the behavior predicted by the classical equa-
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tion of motion. For simplicity, let us consider a vortex-
antivortex pair. Since the vortex and antivortex attract
each other, their classical behavior is to form a dipole
with size 8 that drifts with a center-of-mass velocity
chosen so that the Lorentz force balances the Coulomb
force. For such a pair, small quantum Auctuations do
not involve processes in which one particle goes around
another. (The same thing cannot be said for two vortices
of the same sign. In that case the classical behavior in-
volves one particle going around the other, and fluctua-
tion in the interparticle distance results in changes in the
winding number. ) Therefore to analyze the pair prob-
lem, we drop the Berry-phase term in (6), which leads to
a simpler commutation relation [x~, (p/2)q~y~. ] =i Fro. m
this commutation relation and Eq. (7) we see that the
components of the relative-position vector r=r~ —r2 com-
mute with each other, and their eigenstates ~r„,r~) are
also eigenstates of the Hamiltonian with eigenvalue—o ~ V(r). The density operator p, , (q) ca e'
[R—:(ri+r2)/2] is oA' diagonal in this basis set, since R
and r do not commute. In fact, it can be easily checked
from the commutation relation that the operator e
connects an eigenstate ~r, r~) to the unique eigenstate
~r„,r~+lp/cr ~q ), where lp=1/(2')'~ is the magnetic
length. For large q, the dipole configuration created by
the density operator has an energy given by

I2
E(Iq„()=2~ ~„',V '

(q„(
Iq. lip'

' (lO)

where we have substituted the long-range part of the
static Coulomb interaction for V. Equation (lo) agrees
exactly with the result of Kallin and Halperin. This is
the description of the SMA mode in the region where

q &2m/lp.
For q =0, we believe that the SMA mode consists of

two dipoles, each with a size of roughly lp, oriented in
the x and —x directions, respectively, and with centers
of mass separated by roughly lp. This configuration has
a quadrupole moment, but no net dipole moment, in ac-
cordance with our previous analysis for q=0. As q in-

creases, so does the total dipole moment in the y direc-
tion, and these two dipoles rotate rigidly in opposite
senses as two dumbbells around their individual centers
of mass, until they eventually lie in the y direction and
coalesce into a single dipole when q„=2m/lp. In this pro-
cess, the electrostatic energy monotonically decreases.
As q further increases, the size of the remaining dipole
further increases in the y" direction and so does the ener-
gy. In this way we can explain the existence of the roton
minimum. A disclaimer is in order here. Although we
believe that ignoring the Berry-phase term should be a
good approximation when q„»2z/lp, we are uncertain
about its validity for q near or less than 2z/lp. Finally,
this picture also explains why the SMA is not a good ap-
proximation for q„(2x/lp. This is because of the rela-
tive degrees of freedom involved in the quadrupole
configurations.
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