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Classical, Microscopic, Liquid Poisson Oscillator
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We report on the atomic dynamics of a simulated Lennard-Jones liquid confined in a plane micropore
when the density profile approximates to two dense slabs with a low-density region between. The atomic
motion parallel to the slit is essentially diffusional. The atomic motion across the slit comprises statisti-
cally independent, very fast, but infrequent, jumps of atoms from one slab to the other, a novel observa-
tion in this field. These atomic dynamical events accurately obey Poisson statistics but are consistent
with the static density profile in the gap. This system is proposed as a model classical (as opposed to
quantum mechanical) microscopic physical system which obeys Poisson statistics.

PACS numbers: 61.20.—p

The density profile of microscopic liquids in confined
geometry has been widely studied for many years by the
method of computer simulation (for an excellent ac-
count, see Ref. 1), including work from this laboratory
on liquids confined between plane walls? and inside
spherical containers. >*

The dynamics of atomic motion in liquids in micro-
scopic confinement has been less studied until recently,
e.g., 4 pages of 400 in Ref. 1. Almost all of this work in-
cludes attempts to explain the atomic motion in terms of
diffusion concepts and/or modifications of classical
diffusional behavior.>'3> We shall use a different and
novel approach.

In this paper we report on simulations of a Lennard-
Jones (LJ) liquid for which the potential between atoms
with centers r apart is

4el(o/r)'?—(o/r)®1, r<r.=3.00,
¢ir)= 0, r>r,

where ¢ is an energy parameter (the attractive energy)
and o a length parameter (the atomic diameter). The
liquid is constrained to remain between the two plane
walls by an external potential,

0. (z) =9, (2) + 9, (W —2),
where
ow(z) =5 e(o/z)°;

i.e., the external potential is repulsive and is infinite for
z=<0 and z=w, so w is the distance between the
“walls.” The potential ¢,,(z) is the repulsive part of the
conventional “summed” LJ 12-6 potential (see Ref. 1, p.
83). Most simulations have been for one wall or when w
is large enough that there is an almost homogeneous
liquid in the central region (e.g., in Ref. 13, w=150)
but there is substantial variation in the liquid density
near the walls where it “oscillates” with a period of
about o.

Atomic motion parallel to the walls is effectively unre-

stricted. For times larger than the velocity autocorrela-
tion time 7,, the motion corresponds closely to classical
two-dimensional diffusion. The mean-squared distance
diffused in the plane determines the diffusion coefficient
D through

(x2+y2) =4Dt+ )’(Z()) .

This is true wherever the atom starts from, although that
may affect the value of 7, since it eventually samples the
whole cross section between z =0 and w, and the density
variation is of no direct relevance.®'?

Atomic motion perpendicular to the walls cannot be
described by diffusion, except approximately for atoms in
the central quasihomogeneous region—if there is one
—and for limited elapsed time. This is true even allow-
ing for the confining boundary conditions. In fact, it is
formally shown in Ref. 13 that the diffusion equation,
even with a tensor, space-dependent diffusion coefficient,
corresponds to a uniform equilibrium density, which is
manifestly not the case for a confined liquid. If there is
not even an approximately uniform density region within
the liquid confined by parallel walls, then, if w>o
(mesopores), we have suggested elsewhere!® that the
transverse atomic motion is quite well described by a
rate-equation formalism which is a generalization of a
diffusional one.

We report on the atomic motion in a liquid between
plane parallel repulsive walls which are a distance of
only a few o apart (micropores), in fact, w=3.0c. The
fluid is then very strongly perturbed by the external po-
tential everywhere. In this case even a rate-equation ap-
proach is inadequate. The density profile p(z) is shown
in Fig. 1. Also shown is the density profile for the corre-
sponding perfect gas with the same number of atoms for
which

p(z) cexpl— ¢, (z)/kpT].

The number of particles IV, is 1020 and the total ener-
gy per particle was —2¢. The lateral replicating dimen-
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FIG. 1. The density profile for a Lennard-Jones liquid be-
tween repulsive walls at z=0 and 3.00. The curve without
points is for the corresponding perfect gas.

sions Ly =L, =L were fixed so that the mean overall
density was the same as in Ref. 13, p,, =0.64510 3, so
that L =22.960. After equilibration the temperature
was T =0.854¢/kp, which for the corresponding homo-
geneous coexisting liquid is a typical liquid temperature
for the LJ 12-6 fluid. '*

The unit of time is the Verlet'® unit ¥'=(mo?/48¢) /2,
where m is the mass of the atom. For the conventional
values used for argon ¥ =3.1x10 "!*s. In order to en-
sure an accurate computation we chose the time step
At=0.02V, in our fifth-order Gear predictor-corrector
algorithm, which is less than 7,/20.

We, therefore, have a situation where the confined
liquid takes the approximate conformation of two slabs
of thickness about 0.50 with a rather low density be-
tween; at the midpoint it is 0.48c ~3. A rather similar
system has been studied previously® but for a different
wall potential and not interpreted in the way we do in
the following.

The atomic motion in a direction parallel to the con-
straining planes is diffusional. Fitting by the equation
above we find that Dy=46x10"*c%/V. This is a low
value compared with that in the homogeneous coexisting
liquid at the same temperature when p=0.780 "3 for
which, using published data,'® we estimate that D==100
x 10 ~*c2/V. On the other hand, the fluid density is very
high in the layers, about 1.5, say, and roughly D ocp ~2
which gives a very rough estimate D=30x%10 ~*c%/V, so
the observed value is much as to be expected. It was in
part the low diffusion constant encountered in the slabs,
and the consequent small values of z,, which caused us
to use the unusually small value of Az. Together with the
well-known very slow equilibration of inhomogeneous
systems which demands very long elapsed simulation
times, this made the simulations very expensive to per-
form even using seventeen T800 transputers in parallel.
Typically the number of production steps was 150000,
i.e., T=3000V. The actual computing time per time
step was 1.8 s.

For the transverse, z, motion of the atoms it is mani-
festly ridiculous to think in terms of diffusion, or, indeed,
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FIG. 2. The transverse coordinate z of one atom as a func-
tion of time for an arbitrarily chosen initial time. Note that
the duration of a jump is much shorter than the time between
jumps although the trajectory is by no means free.

even of a rate-equation approach.'> We have studied the
transverse motion of each of the 1020 atoms for the
simulation period 7. We recorded the actual motion for
eight atoms chosen at random and the times of the tran-
sitions for all 1020 atoms. A plot of the z position of one
atom as a function of time is shown in Fig. 2 and is typi-
cal of the behavior of any one of the 1020 atoms.

We see that the atom tends to remain in one layer or
the other and makes sudden rapid jumps from one to the
other. As a closer inspection shows, the atom suffers a
small number of collisions with other atoms during the
transition but, by and large, once it clearly starts across
the gap it gets across. The mean time of transition, (),
is less than 10% of the average time between transitions,
(t), so that the jumps either way can be regarded as
discrete “‘events” at well identified times. We assumed
that if an atom got to z=1.80 when transitting to the
right and z=1.20 when transitting to the left, it had
completed a transit and this was counted by the algo-
rithm as an event.

We have evaluated the various mean times given
below for 33941 events in 1020 trials,

& )V=215, ()V=327,

and
e D/)2=2.08, (t3/(1)3=6.50, ¢H/()*=27.1.

The ratios above immediately establish, with little doubt,
that the probability distribution of the events is Pois-
son'”1® for which (t"/{t)"=n!; ie., the above three
numbers, in the limit of an indefinitely large number of
events, would be 2, 6, and 24, respectively.

This is why we call our system a liquid Poisson oscilla-
tor.

The above moment method of determining the statis-
tics of events is never used, as far as we are aware, in the
analysis of physical systems. This is presumably because
of, first, the difficulty and expense of measuring and
recording the actual times of the events or even of the
time intervals ¢ (as remarked by Rutherford, Geiger, and
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TABLE I. Conventional test for Poisson statistics. w =3.0c,
T =2995.4V, N =N, =1020.

Nk
k Simulation Poisson

0 0 0.2
1 1 1.3
2 8 5.9
3 16 17.4
4 45 38.2
5 72 67.4
6 81 98.9
7 123 124.4
8 146 137.0
9 139 134.1
10 120 118.1
11 96 94.6
12 58 ©69.4
13 42 47.1
14 27 29.6
15 22 17.4
16 15 9.6
17 1 5.0
18 3 2.4
19 4 1.1
20 0 0.5
21 1 0.2
> 22 0 0.1

Bateman'?). This is not a real problem for the computer
model in these days of massive storage facilities.
Second, the interval T has to be long enough that 7/(¢)
> 1. This is usually a tedious requirement experimental-
ly, but it is not too onerous for us. However, we also per-
form the conventional analysis. The best known such ex-
periment is Rutherford, Geiger, and Bateman’s measure-
ments of radioactive decay by a-particle emission (see
Ref. 19, p. 149 of Ref. 17, and Ref. 18). The other
well-known example is the statistics of the emission of
photons.?%?! It may be noted that both these are quan-
tum mechanical which is peculiarly partial to events in
the strict sense. The number of particles (events) is
recorded for a large number N of identical intervals of
time 7. Then if exactly k events are found /V; times, the
mean number of events is

(k)= kNy/N,
k=0

and if the statistics are Poisson, the expected number of
times that exactly k events are observed in 7, for
N — oo is given by

Ny =Nk exp(—<k))/k!.

{k) is usually a small, but not too small, number. This
happens to be so for our time intervals. For the particu-
lar sample in Fig. 2, k=6 and, in fact, (k)=8.18. The
observed values of Ny are compared in Table I with the

expected values for an infinite Poisson process. This in-
creases our confidence that the process is rather accu-
rately Poisson.

As is well known, a Poisson distribution corre-
sponds to the probability p of an individual event being
vanishingly small, but that there are a very large number
of attempts » in the time interval available and that np,
called (k) above, is of moderate size. The physical situa-
tion which led us to expect a Poisson distribution in our
system is that a particular atom has a very small proba-
bility p of both being in a suitable position, say, on the
inner side of one of the two main density peaks, and hav-
ing a suitably high z component of velocity in the correct
direction so as to cross the gap without serious hindrance
by other atoms in the gap. It makes many attempts n
when the conditions happen to be unfavorable. We can
use the events in T for all the IV, atoms because they are
effectively statistically independent.

Nevertheless, at any given moment quite a large num-
ber of atoms are crossing the gap somewhere in the plane
of area L2. In fact, there are some 100 atoms in the gap
at any moment. The mean density of atoms in the gap,
assumed to be of width g, is given by

pe =t/ )N, /gL? .

17,18

Assuming that g= 1 o (see Fig. 1) the formula yields
the value p, =0.40 ~>. This is as consistent as one could
reasonably expect with the observed density in the gap;
see Fig. 1. Thus the atomic dynamics is consistent with
the static property, the density profile.

Explaining the values of the parameters observed in
terms of the theory of confined liquids is, of course, a
more difficult matter.
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