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Drifting Pulses of Traveling-Wave Convection

Paul Kolodner
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I describe experiments on "pulses" of convective traveling waves in an ethanol/water mixture con-
tained in an extremely uniform annular cell. In contrast to previous observations, I find that pulses drift
continuously, with no long-term change in velocity. The drift velocity vanishes at onset, increases with
the distance above onset, and agrees with the results of numerical integrations of the Navier-Stokes
equations.

PACS numbers: 47.25.Qv, 47.20.Ky

Several recent experiments have explored the proper-
ties of confined states of traveling-wave (TW) convection
in binary Auids in annular containers. ' In these experi-
ments, which used ethanol/water mixtures with separa-
tion ratios in the range —0.09& y( —0.07, the first
dynamical state seen above the onset of convection con-
sisted of narrow patches of traveling waves with a fixed
spatial profile. This profile was shown' to match the
functional form of a "pulse" solution of a subcritical
Ginzburg-Landau equation in an unbounded geometry,
suggesting that the experimental localized states are
indeed pulses in the sense of Ref. 3. However, except for
transients, the experimental pulses were observed to be
stationary. This presents a serious conAict with expecta-
tions based on the simplest subcritical Ginzburg-Landau
equation, because localized TW states should propagate
uniformly in space with the group velocity of linear
waves in this model. The addition of nonlinear gradient
terms to this equation has been shown to cause pulse
solutions to propagate more slowly than this. However,
the fact that experimental pulses do not drift at all sug-
gests that some other physics beyond the scope of
Ginzburg-Landau models —such as an interaction be-
tween the convective flow fields and the cell walls —is

playing a role in this system. Thus, the stationarity of
experimental pulses seems to constitute a major obstacle
to their understanding on the basis of model equations.

This paper reports observations of traveling-wave
pulses in an extremely uniform annular cell. In contrast
with previous observations, I find that pulses drift con-
tinuously, with no long-term change in velocity. The
drift velocity vd, vanishes at onset and increases with the
distance e above onset. Because of this sensitive depen-
dence e, vd, follows local nonuniformities in the cell,
which can be measured independently. This sensitivity
to nonuniformities suggests an explanation of why pulses
were previously observed to slow down and stop. The
measured value of vd, agrees reasonably well with recent
numerical calculations based on the Navier-Stokes equa-
tions. These results resolve an apparent disagreement
between numerical theory and experiment, and they
present a fresh theoretical challenge: to explain the de-

pendence vd, (s). More importantly, they suggest that a
theoretical model based on a Ginzburg-Landau equation
may be a valid approach to understanding this system
after all.

The apparatus has evolved slightly from a previously
described version. The cell is an annular channel of
height d=0.313 cm, radial width 1.66d, and mean cir-
cumference 76.0d which is formed by a plastic disk and
ring that are clamped between a heated, mirror-polished
silicon bottom plate and a water-cooled sapphire top
plate. It has been crucial to make this cell as geometri-
cally and thermally uniform as possible, and an assess-
ment of the uniformity is given below. Pulses were stud-
ied using a 1.45-wt% ethanol/water solution at a mean
temperature of 26.9 C, for which the separation ratio
y= —0.072, the Prandtl number P =6.69, and the Lewis
number L =0.009. The temperature diAerence applied
across the Auid is typically 3.5 K and is regulated with a
stability of ~ 0.2 mK. The onset temperature diff'erence
exhibits no measurable drift with time, indicating that
there are no leaks in the cell which might cause localized
concentration changes. The flow is visualized by sha-
dowgraphy. ' The shadowgraph image is directed onto
an annular array of 720 photodiodes, whose output is
sampled at regular time intervals by a small computer.
The data processing employed is described below. The
convective patterns are always observed to be one dimen-
sional, consisting of superpositions of waves which travel
azimuthally around the cell in opposite directions ("left"
and "right" ).

The linear TW instability which triggers the onset of
convection in this system is an excellent tool for assessing
its uniformity. The techniques used for controlling the
linear TW have been described previously. ' Using a
Auid with y= —0.021, I increased the temperature dif-
ference across the cell until oscillations due to the insta-
bility were observed in the shadowgraph. The amplitude
profiles AL ~(x) of the corresponding left and right TW
(x denotes the spatial position in the cell) were computed
in real time by the computer, using complex demodula-
tion techniques. By adjusting the temperature dif-
ference across the cell so that the sum of the spatially
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FIG. l. (a) Left (dashed line) and right (solid line) wave
amplitude profiles Az z(x) vs spatial position x, for a steady
state of linear waves exactly at onset, using a Auid with
y= —0.021. Both profiles exhibit spatial growth in the region
0'-90' and spatial decay in the region 90'-360'. (b) Local
stress parameter e(x) derived from the amplitude profiles
above using Eq. (1). The two curves agree reasonably well and
exhibit nonuniformities of better than about 0.2%.

averaged amplitude profiles exhibits zero temporal
growth rate, the system is servoed at the linear onset,
and a steady pattern of linear TW is allowed to evolve.
The amplitude profiles of this state are shown in Fig.
1(a). These profiles are far more uniform than have
been obtained previously. The wave numbers of the left
and right TW components are also spatially uniform and
equal to within about ~ 0.5%.

The linear TWs are quantitatively described by the
linear part of a complex Ginzburg-Landau equation

ew, aw,
zp +' s = 8(x)(1+tcp)Az ~

t x
2

+(p(1+l'c]) ' . (1)
ax, R

In order to model nonuniformities in the cell, I allow the
stress parameter e to have a weak spatial dependence.
[The experimentally measured fraction by which the
temperature diA'erence h, T applied across the cell exceeds
the onset of convection AT„which I denote s=(AT

AT, )/AT„correspon—ds to the spatial average of s(x).]
All the other parameters in Eq. (1) have been defined in
Ref. 9 and are accurately known. Thus, the measure-
ments of Az ~(x) can be substituted into Eq. (1) to yield
two estimates for s(x). These are shown in Fig. 1(b).
s(x) is uniform to better than ~0.2%. The key to this
extreme uniformity is the use of compliant 0 rings to
seal the cell. By clamping the cell together under an in-
terferometer against the resistance of the 0 rings, I am
able to stably adjust the cell height with a spatial unifor-

FIG. 2. Hidden-line plot of the amplitude profiles of a state
consisting of two pulses of left-going TW, at a=0.0090. Both
pulses drift continuously to the left.

mity of better than +. 0.3 pm. Without compliant 0
rings, the cell flatness can be 20 times worse.

After this assessment of uniformity was made, the cell
was filled with the fluid with y= —0.072. As in previous
experiments at similar y, ' the first convective state ob-
served just above onset takes the form of one or more
TW pulses. Their spatial amplitude profiles are comput-
ed at each time step using spatial demodulation of the
shadowgraph image at the measured mean wave num-
ber. A hidden-line plot of the evolution of a two-pulse,
left-going state is shown in Fig. 2. As in previous experi-
ments, these pulses have a FWHM of approximately 5
times the cell height. However, in contrast to previous
observations, they drift continuously in the direction of
the phase velocity of the underlying TW. I have created
one-, two-, and three-pulse states and pulses which drift
in either direction. Pulses have been observed to travel
continuously for days at constant e, circling the cell
several times with no apparent long-term change in ve-
locity. Because of this drift, counterpropagating pulses
are always removed from the system by annihilation
events of the type described in Ref. 2.

For quantitative characterization of pulse drift, I cal-
culate the spatial position of each pulse by computing
the first moment of its amplitude profile. Differentiating
in time gives the drift velocity vd„which is scaled by
tc/d, where x is the thermal diffusivity of the fiuid, and d
is the cell height. Figure 3 shows the spatial dependence
of the vd, (x,s) for several different values of s (vd, &0
for left-going pulses; from here on, I will only consider
the absolute value of vd„). The magnitude of the average
drift velocity increases with e. Aside from this, the spa-
tial structure of vd„(x, s) is reproducible from run to run,
and from pulse to pulse in a given run. As shown below,
this is just because vd, (x,s) is sensitive to the local value
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FIG. 3. Absolute value of the drift velocity vd, vs spatial po-
sition for several different left-going pulses. (a) Single-pulse
state, a=0.0027. (b) Triple-pulse state, e=0.0065. The three
pulses are represented by +, 0, and x. (c) Triple-pulse state,
e =0.012. (d) Triple-pulse state, e =0.017. The absolute value
of the average drift velocity increases with increasing s. The
spatial structure of vd, (x) is reproducible from run to run as
well as from pulse to pulse in a single run.

of e(x).
From nineteen runs at various values of c, I extract

6445 separate measurements of vd„(x, e). These data are
used as inputs to an iterative procedure for deducing
both the intrinsic dependence of vd„on c and the spatial
dependence of e(x), which is then compared with that in

Fig. 1(b). I start by simply plotting the spatially aver-
aged drift velocity vd, for each run versus e. These data
are represented by the nineteen discrete symbols in Fig.
4. The error bars are due to the spatial variation of vd„.
At this level, the principal result of this paper is already
evident: vd, increases roughly linearly with e. To within
the error bars, multiple-pulse states drift at the same ve-
locity as single-pulse states.

e is then parametrized as a function of vd, by fitting a
line to the nineteen data points in Fig. 4. Then, for each
of the 6445 measurements of vd, (x,e), the fitted e(vd, ) is
used to calculate the stress-parameter nonuniformity
Be(x) =e(vd„(x, e)) —e. If the dependence vd„(e) is close
to linear, then Be(x) should match the curve in Fig.
1(b). The results for Be(x) are binned in space and
averaged to produce the solid curve in Fig. 5; the error
bar is twice the average of the standard deviations in the
individual bins. For comparison, the dashed curve is the
average of the two estimates for e(x) shown in Fig. 1(b),
shifted to the right by 21', which corresponds to 4.4
times the cell height, or approximately one pulse width.
The demodulation result, which is intrinsically low-pass
filtered, exactly matches the low-spatial-frequency com-
ponent of B'e(x). That two measurements of Be(x) based
on diA'erent dynamical states agree so well constitutes
strong confirmation of both. The pulse velocity depends
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FIG. 4. Drift velocity vd„vs stress parameter e. Each
discrete symbol represents the spatially averaged value I, d, in a
run like those in Fig. 3, plotted at the value of s for that run.
The error bars represent twice the standard deviation of the
spatial variation of vd, for each point. Open circles: single-
pulse states. Solid circles: double-pulse states. Triangles:
triple-pulse states. The smooth curve is the binned and aver-
aged drift velocity which results from the removal of the spa-
tial variation of e(x), and the size of the isolated error bar is
twice the average standard deviation for the individual bins.
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FIG. 5. Solid curve: binned and averaged values of the
stress-parameter nonuniformity Be(x), as deduced from pulse-
velocity data. The error bar represents twice the average of the
standard deviations in each of the bins. Dashed curve: average
of the two curves for e(x) shown in Fig. 1(b), shifted to the
right by 21 or 4.4d.
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on the stress parameter measured 4d to 5d ahead of its
center.

The iterative procedure can be carried further to de-
crease the error bars in Fig. 4. The data in Fig. 5 allow
the calculation of the true local stress parameter
e(x, e) =e+Be(x), and thus the x dependence can be re-
moved from the 6445 measurements of vd, (x,e). The re-
sulting points are binned in e and averaged, and the
smooth curve in Fig. 4 is a spline fit to the binned points.
As shown by the isolated error bar in Fig. 4, the uncer-
tainty in vd, (e) has been reduced by about a factor of 2.
Higher-quality data taken since the original submission
of this paper are very well fitted by a function of the
form vd, (e) = —vo+a(e+eo)'t . With vo=0.051, a
=0.89, and a=0.0025, this function fits the original
6445 data points in Fig. 4 with a rms error of 0.003.
These results clarify several recent experimental observa-
tions. In Refs. 1 and 2, pulses were always observed to
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slow down and stop after changes in ~. At the small
values of i used in previous work (i~ 0.008), a nonuni-
formity only 6 times worse than that in Fig. 5 will

guarantee that there is always a region of negative e in

the cell. Since vd, drops to zero at a=0, this means that
pulses will drift through the region of positive c, slow
down, and stop. ' I estimate that this was the case in my
own previous experiments. In Ref. 2, my collaborators
and I observed that left- and right-going pulses always
seemed to come to a stop at the same two separate loca-
tions, which faced each other and which were about 20d
apart. This was independent of the initial location of
pulse formation and of the number of pulses. It now
seems clear that this was because our previous cell had a
single local minimum in Be(x), about 1 ld wide.

Barten, Liicke, and Kamps have recently computed a
localized two-dimensional TW solution of the full
Navier-Stokes equations for y= —0.08 which appears to
be identical to the experimentally observed pulses.

The numerical pulse is observed to drift slowly in the
direction of the phase velocity of the TW, in agreement
with my observations. Because the drift and phase veloc-
ities of the pulse, as well as the linear phase velocity, are
probably aA'ected by the narrow width of experimental
cells, it is dificult to compare the absolute velocities cal-
culated in two dimensions with experimental measure-
ments. For this reason, these authors quote not absolute
velocities but ratios: For a=0.008, they find v~h„,/
vd, —15 and v~;„„,/vd, —35. For the same s, I measure
16 and 47, respectively; the first number has an uncer-
tainty of about 20% because of the di%culty in defining
the phase velocity. I regard this agreement as good, con-

sidering the uncertain effects of cell width. The chal-
lenge to theory is now to construct a reduced model of
this system which accounts for this slow drift velocity
and its dependence on e.

I thank P. C. Hohenberg and C. M. Surko for useful
discussions.
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