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Inhuence of Saturation Properties on Shell-Model Calculations
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It is shown that the nuclear Hamiltonian P separates rigorously into a monopole field & and a mul-

tipole part &~. P is entirely responsible for saturation properties and can be treated phenomenologi-
cally with few parameters. When realistic interactions are used for &~ in regions from the p shell to
the W =82 isotones, shell-model calculations yield excellent spectroscopy and demand nuclear radii very
close to the observed ones.

PACS numbers: 21.6O.Cs, 21.10.Ft, 21.30.+y

The use of realistic potentials (i.e., consistent with NN
scattering) in shell-model calculations was pioneered by
Kuo and Brown' (KB). Of the enormous body of work
that followed we would like to extract two basic observa-
tions.

The first is that whatever the forces (hard or soft core,
ancient or new) and the method of regularization
(Brueckner 6 matrix, ' Sussex direct extraction, or
Jastrow correlations ), the effective matrix elements are
extraordinarily similar. ' The most recent results
amount to a vindication of the original work of Kuo and
Brown. We take this similarity to be the great strength
of realistic interactions, since it confers on them a
model-independent status as direct links to the phase
shifts.

The second observation is that when used in shell-
model calculations and compared with data these matrix
elements lead to results that deteriorate rapidly as the
number of particles increases. It was found that in
the fp region a phenomenological cure, confirmed by ex-
act diagonalizations' up to 4 =48, amounts to very sim-
ple modifications of the centroids of the KB interac-
tion. '' lt may be obvious, but we shall demonstrate it
explicitly, that the need for such a cure refIects the
failure of nonrelativistic potentials to saturate proper-
l 12, 13

Saturation properties dictate the equilibrium radius
and energy of nuclei through some form of Hartree-Fock
(HF) self-consistency. Our program consists in showing

that once these properties are correctly enforced phe-

nomenologically, the realistic interactions give a very
sound description of correlations and detailed structure.
We proceed in three steps.

(I) The nuclear Hamiltonian is shown to separate
rigorously in two terms iY =&' +PM. The monopole
field & is entirely responsible for spherical HF self-

consistency and its generalization to open shells. The
multipole part 'P~ acts as residual interaction.

(II m) Good saturation properties in P are enforced

by introducing directly as parameters observed closed-
shell and single-particle energies.

(II M) The nuclear radii at which P~ is calculated
are allowed to vary freely and adopt values consistently
close to the observed ones.

(III) Shell-model calculations in the p and sd regions
and for the N =50,82 isotones and Z =28, 50 isotopes
then establish the soundness of the realistic Jt'M. Our
choice of the Kahana, Lee, and Scott (KLS) interaction
is made owing to availability' but rests on the observa-
tion in the second paragraph above.

(I) Separation properties. —A properly regularized
potential is density dependent, nonlocal, and of a rank
higher than 2. However, since these complications are
mostly related to saturation, which we shall treat phe-
nomenologically, we assume that our Hamiltonian is a
sum of kinetic (K) and two-body terms (V), and we per-
form on it a preliminary separation P =P +/t'M (d
for diagonal),

P" =+K„„n„+g V„,n„,+b„, T„T,— B„(1+8'„,)

Here n„and T, are the number and isospin operators for shell r which has degeneracy N„=2(2j„+I). Also,
n, =N„—n„,n„=n,(n, —8„,)(1+6„,) ' (same notation for N„,). K„„andV„,„arethe one- and two-body matrix ele-

ments,

V„,=g V„„,(2J+1)(2T+1) g(2J+1)(2T+ I), b„,=V„',—V„„V„,=g V„,„,(2J+ I) g (2J+1)

(sums over Pauli-allowed values of J,T). SM is the two-body part of the interaction with V„,„replaced by
JT JT T

~p'sl u +rsvp u +rs rt ~su .
The important property of &" is that it reproduces the average energy of a configuration at fixed n.„T„for each
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(2)

shell. ' In particular, it gives the expectation value of P
for closed shells, which are configurations (NiNq )
with only one state. By unitary transformations of the
underlying fermion fields (a„=+U„,b, ), the n„and T„
operators can only go to operators S„andT„coupled to
J=O and T=0, 1, respectively (e.g. , n„=a„a„goesto
QU„,U„&b, bt =gU„,U„,S„).Therefore the following
must hold. '

Theorem. —There exists a decomposition // =&
+//M such that only '1f contributes to spherical HF
calculations. // is written entirely in terms of unitary
generators S„andT„,.

The explicit form of the decomposition will be pub-
lished elsewhere and will be made available on request.

Corollary. —By replacing expectation values by aver-
ages, HF variation can be extended to arbitrary con-
figurations (ninz ). '

Therefore we may assume that varying a good //
produces an optimum field P (n) for each n and sug-
gests a model space At spanned by configurations
(N;N/N/, . n„n, . ) starting at n =gn, =0, the core
and extending to n=N=QN„, the closed shell. The
Hamiltonian that enters a shell-model calculation
(H=H +HM) is in first approximation the restriction
of // to JK. We explain how its parameters "propagate"
(a concept we borrow from the French), i.e., how they
vary with n and how they are renormalized by states out-
side Af, (core polarization).

(II m) Propagation of H .—H has exactly the form
of Eq. (1) with K„,replaced by e„=K„„+PN;„V;,(sum
over occupied orbits i), but to incorporate observables as
independent parameters we have to rewrite it' ' as

H =C+gn„rt„+g n„,W„,+ g r„,b„,,r(s

Itco =40(a+bn)/(r')(c+n), (3)

where (a, b, c) =(6,2.5,4) in the p shell and (36,3.5, 16)
in the sd shell. For heavier regions the estimate Aco
=34.6A i/3(r2) —I (i e 40~ —I/3 for (r2)i/2 0.93M' )
should be su%cient. The behavior of HM as a function
of co (and hence (r ) and n) follows from
W„„„(co)=W„,t„(coo)co/coo, which holds fairly well for
KLS. To account for core polarization we argue that in
the first approximation it should aA'ect the width of the
eigenvalue distribution in A, and we incorporate it
through two multiplicative parameters XT. This is, of
course, no substitute for the sophisticated calculations
now possible, but it is consistent with monopole-level
corrections that must precede core-polarization improve-
ments of //. Separating the T=O and 1 parts of HM
and incorporating co dependence we end up with

QN, r/„=0). The minimal parametrization is rt„(n,2), a
linear forin that reproduces the single-particle (n=1)
and single-hole (n =N 1—) splittings.

W„,=V„,—W„—W —W and b„arenot directly ob-
servable. The minimal choice in this case follows hints
from work in the fp shell and it involves correcting the
KLS values according to W„,=W„,(KLS)+ W„,(X) and
b„=b„,(KLS)+ Y+2(ci„,—1)Z, where W,, is the W„,-
type centroid of the monopole operator XP(n„,—n„,)
(r (s).

The minimal (or standard) parametrization we have
described involves only three nonobservables (X,Y,Z).
Physics may dictate more general forms as we shall see.

(II M) Propagation and core polarization in HM.—
The most conservative assumption about HM is that ma-
trix elements are calculated in an oscillator field common
to all orbits (defined ideally by P variation). To relate
its frequency Icco (MeV) to the mean-square radius
(r ) ' (fm) we use '

Nrs 2&rs
&rs

N rs

&ss

Nrr Nss

H. ="(")~.Ho+ "H
Np Xp

We have 0„=0at n =O, N, 0„=r„,=0 [see Eq. (I)]
at n =0, 1,N, N —1. Furthermore, A„and r„,are invari-
ant under n„n„andQ„changes sign. These proper-
ties explain the power of Eq. (2).

C =E+en+Wn(n —I)/2, with E =g(K;;N;+ V/
XN/), e=+N„e,/N, W=2+N„V„,/N(N —1), is the to-
tal centroid. All quantities depend on n, e.g. , C (0)
=E(0) is the energy of the core, but in general
E=E(n) is the energy of the occupied orbits. The
minimal parametrization we choose is C =C'(n, 4), a
polynomial of third order in n that for n =0,N, 1,N —

1

reproduces the core, closed-shell energies, and the
single-particle and single-hole centroids, respectively (all
observables).

g„=e,—e+ (n —1)W„, with W„=g(N„—8„,)(V„,—W)/(N 2), are the central-field —splittings (note

It should be stressed that co(n) is an observable
through Eq. (3) and, therefore, involves no free parame-
ters.

(III) Results: p and sd shells We h.a—ve selected the
free parameters through a least-squares fit to the
(Coulomb-corrected) absolute energies of 179 states in

the sd shell and 41 states in the p shell. The evolution of
the root-mean-square deviations (RMSD) can be found
in Table I. For the Cohen and Kurath ' (CK) and Wil-
denthal (W) interactions we have extracted the 8 cen-
troid and replaced it by a C (n, 6) form. For KLS we
have fixed A,o= 1, Xi =1.4 (sd), 1.2 (p). The uncertain-
ties on A, T are less than 10%. NP (no parameters) in-
corporates C (n, 4) and rt„(n,2) in Eq. (1).

Sco(v) (standard with polynomials of order v —1 for
co) brings in only X,Y,Z as free parameters for b„and
W„, in Eq. (1). The drop in RMSD between the con-
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TABLE I. Root-mean-square deviations in keV for diff'erent

calculations in the sd and p shells. See text.

sd
1.2-

M Mp

W-CK
NP

Sco(1)
Sco(2)
Sco(3)
Sco(4)
Sco(5)
Sco(6)
Sco(7)

SVco(1)
SVco(7)

FP

235
2500

883
486
475
445
443
443
441
832
399
285

—605
1800
920
913
913
739
700
692
674
703
380
290
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0.9 g
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FIG. 2. Experimental (Ref. 26) Eq. (3) (circles and error
bars) and calculated values of co/cop for SVco(7) in the p shell
(triangles) h cop = 1 3.

stant co(1) and linear co(2) forms and the stabilization
after co(4) in the sd shell need no comment. The physi-
cal origin of the effect clearly shows in Fig. 1 for co(4).
In the p shell the calculated m is more complicated and
not as convincing.

For SVco(v) [standard variations with co(v)], we in-

corporate as free parameters some of the observables. In
this case we allow variation for g, and g, . In the sd shell
we do not learn much. In the p shell the gain is spectac-
ular and Fig. 2 for co(7) is now quite satisfactory: The
improvement with respect to Sco(7) comes from a small-
er rt„(the pltz-p3tq splitting, intermediate between CK
and experiment). Although this amounts to p-shell
idiosyncrasy, there is a general point to be made: With
the (mild) exception of C (n, 4), Sco and SVco amount to
constant co for the energies which is not very consistent if
co turns out to have the aspect of Figs. 1 and 2. It is nice
to have very few parameters but if the physics commands
greater freedom, we must take it.

For FP (full propagation), we come back to experi-
mental values for the observables but allow for C (n, 6)
and rt„(n,6) forms. Furthermore, all W„(r~s),b,„,
and Pb„,(r (s) are left to vary freely and propagate
linearly. At this stage we enter the realm of high-quality

Gd Mp

1 ~ 2

spectroscopy and simultaneously explore saturation prop-
erties. Details will be given elsewhere.

There are sources of uncertainty in the comparisons of
Figs. 1 and 2: Eq. (3) may be naive, radii at fixed n may
be T dependent (especially when deformation is present),
and the A, T parameters may be n and T dependent.
However, these uncertainties are far from sufficient to
cast doubts on a crucial result: Spectra dictate choices
of radii close to the experimental ones. It should be not-
ed that the 8' interaction yields RMSD=255, 235, and
215 keV for co =co(2), co = l18/(16+ n)] ', and co

=co(6), respectively. The fact that a power law for co is
of no use in the p shell has led Van Hees, Booten, and
Glaudemans to introduce three-body forces that pro-
duce a drop in RMSD similar but smaller than those in

Table I. It is an open question whether these results
mock saturation effects or amount to genuine rank-3
forces.

(III) Results: N=50, 82 isotones, Z=28, 50 iso
topes. —In these regions, SVco(1) is sufficient to illus-
trate the luxuries we can afford with a realistic interac-
tion.

(i) We select the ground states of even nuclei and the
one-quasiparticle states of odd ones and do a seniority
v =0 and 1 calculation (Table II). The values of q, and

g, always come close to the experimental ones when
these are known.

(ii) Having fixed the parameters, we increase v to
2,3,4,5, etc. , and notice that v is a very good quantum
number and that many states come quite naturally at ob-
served positions to within the RMSD in Table II.

1.0-

0.9—

TABLE II. Root-mean-square deviations in keV for 0- and
1-quasiparticle fits in diA'erent isotone and isotope families.
See text.

0.8
2 12

n
22

FIG. l. Experimental (Ref. 26) Eq. (3) (circles and error
bars) and calculated values of colcoo for Sco(4) in the sd shell
(triangles) ticop =11.

N =50
N=82
Z =28
Z =50

1.35
1.35
1.50
1.40

RMSD

160
128
194
129

9
7.9

10.0
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Spectroscopy in the N=82 region is simply excel-
lent. For %=50, the results compare well with those
of Ji and Wildenthal except that our calculation misses
a few levels they fit, brings the g9y2 orbit at least 1 MeV
lower, and conserves seniority better. The Ni and Sn iso-
topes are quite satisfactory in spite of a systematic
discrepancy: For low n the first 2+ state comes too high
(up to 600 keV in Ni, 300 keV in Sn). Problems of this
sort should be put to the credit of the interaction for sig-
naling trouble in the calculation. In the case of Ni we
know it must come from coupling to low-lying states in

Ni. For Sn, the situation is bound to be similar: In
genera1, W=Z cores are easier to polarize than those
with neutron excess and demand careful treatment.

Propagation plays a minor role in these regions, except
through the linear behavior of the single-particle field,
which is compatible with a constant two-body force.

In conclusion, the separation theorem provides the
framework that dictates the necessary steps to enforce
good monopole behavior. Some of them have been de-
scribed previously' ' and now we propose a consistent
implementation with bare forces and very few parame-
ters, that stresses the inAuence of radii in light nuclei.
Realistic forces are quite adequate for spectroscopic
work provided saturation properties are taken care of.

'T. T. S. Kuo and G. E. Brown, Nucl. Phys. A85, 40 (1966).
2S. Kahana, H. C. Lee, and C. K. Scott, Phys. Rev. 180, 956

(1969).
J. P. Elliott, A. D. Jackson, H. A. Mavromantis, E. A. San-

derson, and B. Sing, Nucl. Phys. A121, 241 (1968); L. D.
Skouras and J. C. Varvitsiotis, Nucl. Phys. A513, 239 (1990).

J. Fiase, A. Hamoudi, J. M. Irvine, and F. Yazici, J. Phys.
CJ 14, 27 (1988).

SE. Pasquini and A. P. Zuker, in Florence Conference on
Medium and Light Nuclei, edited by P. Blasi and R. Ricci
(Editrice Compositrice, Bologna, 1978).

M. L. Rustgi, H. W. Kung, R. Raj, R. A. Nisley, and H. H.

Hull, Jr. , Phys. Rev. C 4, 854 (1971).
7M. F. Jiang, R. Machleidt, D. B. Stout, and T. T. S. Kuo,

Phys. Rev. C 40, 1857 (1989).
8E. C. Halbert, J. B. McGrory, B. H. Wildenthal, and S. P.

Pandya, in Advances in Nuclear Physics, edited by M.
Baranger and E. Vogt (Plenum, New York, 1971), Vol. 4, p.
315.

B. A. Brown and B. H. Wildenthal, Annu. Rev. Nucl. Part.
Sci. 38, 29 (1988).

' E. Caurier, A. Poves, and A. P. Zuker, Universite Louis
Pasteur, Strasbourg, Report No. CRN/PN 89-22, 1989 (to be
published).

''T. T. S. Kuo and G. E. Brown, Nucl. Phys. A114, 241
(1968).

' B. D. Day, in From Nuclei to Particles, International
School of Physics "Enrico Fermi, " Course LXXIX, edited by
A. Molinari (North-Holland, Amsterdam, 1981).

' H. Kiimmel, K. H. Luhrmann, and J. G. Zabolitzky, Phys.
Rep. 36C, 1 (1978).

'4H. C. Lee, computer code (private communication to A.Z.).
'5J. B. French, in Isospin in Nuclear Physics, edited by D. H.

Wilkinson (North-Holland, Amsterdam, 1969).
'6A. P. Zuker, Czech. J. Phys. B 25, 311 (1975).
'7J. B. French and V. K. B. Kota, Phys. Rev. Lett. 51, 2183

(1983).
' A. P. Zuker, in Mathematical and Computational Methods

in Nuclear Physics, Lecture Notes in Physics Vol. 209, edited
by J. S. Dehesa et al. (Springer, Berlin, 1984).

'9A. Bohr and B. Mottelson, Nuclear Structure I (Benjamin,
New York, 1964).

zoP. J. Ellis and E. Osnes, Rev. Mod. Phys. 49, 777 (1977); J.
Shurpin, T. T. S. Kuo, and D. Strottman, Nucl. Phys. A408,
310 (1983).

z'S. Cohen and D. Kurath, Nucl. Phys. 73, 1 (1965).
zzA. Abzouzi, E. Caurier, and A. P. Zuker (to be published).

A. G. M. Van Hees, J. G. Booten, and P. W. M. Glaude-
mans, Phys. Rev. Lett. 62, 2245 (1989).

24X. Ji and B. H. Wildenthal, Phys. Rev. C 37, 1256 (1988);
40, 389 (1989).

25A. Cortes and A. P. Zuker, Phys. Lett. 84B, 25 (1979).
H. De Vries, C. W. De Jager, and C. De Vries, At. Data

Nucl. Data Tables 36, 495 (1987).


