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Closed Timelike Curves Produced by Pairs of Moving Cosmic Strings: Exact Solutions

3. Richard Gott, III
Department ofAstrophysical Sciences, Prt'nceton University, Princeton, iV'ew Jersey 08544

(Received 18 October 1990)

Exact solutions of Einstein s field equations are presented for the general case of two moving straight
cosmic strings that do not intersect. The solutions for parallel cosmic strings moving in opposite direc-
tions, each with y, ) (sin4ttp) ' in the laboratory frame show closed timelike curves (CTC's) that circle
the two strings as they pass, allowing observers to visit their own past. Similar results occur for non-
parallel strings, and for masses in (2+1)-dimensional spacetime. For finite string loops the possibility
that black-hole formation may prevent the formation of CTC's is discussed.

PACS numbers: 04.20.3b, 95.30.Sf, 98.80.Cq

Traversable-wormhole solutions violating the averaged
weak energy condition have been found' which exhibit
closed timelike curves (CTC's). Observers traveling
along CTC's can visit their own past creating a time
machine with its associated causality paradoxes. It has
generally been supposed that the laws of physics should
be such as to prevent such solutions. Perhaps quantum
field theory forbids violation of the averaged weak ener-

gy condition or perhaps our Universe was created
without any traversable wormholes and the laws of phys-
ics prevent the topology changes that would accompany
their construction. Alternatively it may be that CTC's
are allowed, providing that the laws of physics are aug-
mented by a principle of self-consistency. Thus it is
quite important to see what kinds of solutions produce
CTC's. The present paper presents exact solutions to
Einstein's field equations for the general case of two
moving straight cosmic strings that do not intersect. Re-
markably, some of these solutions produce CTC's even
though they (1) do not violate the weak energy condi-
tion, (2) have no singularities or event horizons, and (3)
are not topologically multiply connected.

For straight cosmic strings, the weak-field solution
was followed by an exact solution whose exterior
metric is given by

ds =dr +(1 —4p) r dt/t +dz dt—
~here p is the mass per unit length in geometrized units
(G=c=6 =1), i.e., in Planck masses per Planck length,
and whose associated exact interior solution for the uni-
form density case is given by

ds =ro (d8 +sin Bdp )+dz —dt

where the density p= 1/8trro and P, = —p. The geom-
etry of a t =const, z =const section of this solution is
that of a cone with angle deficit D =8zp in the exterior
(vacuum) region and that of a spherical cap in the interi-
or region. The coordinates have ranges —~ & t & ~,—~ & z & ~, 0 ~ p ( 2tr, 0 ~ 9» cos '(1 —4p), and
rb ~ r & ~, where rt, =rp[(1 4p) 1] . Adopt a
new coordinate p = (1 —4p )p. The exterior metric be-

comes

ds =dr +r dt/t' +dz dt—
where 0 ~ P' & (1 —4p)2tr and r ).rt, Metric . (1) is just
the metric for Minkowski space in cylindrical coordi-
nates where a wedge of angle deficit D =8xp is missing
and points with coordinates (r, p =O, z, t) and (r, p =2tr
—8trp, z, t) are identified. (Interestingly, these solutions
had been known as mathematical solutions to the field
equations without any physical interpretation as strings
prior to the invention of cosmic strings. )

General static string solutions can be found without
cylindrical symmetry or uniform density. These have
metrics of the form ds =ds' +dz —dt, where ds' is
the metric of an arbitrary spacelike two-surface where
the Gaussian curvature K can vary with position but is
never negative and p = P, =K/8tr. —

The static solution for two parallel cosmic strings
separated by a distance 2d is constructed as follows.
Adopt metric (1), replacing r and p' by the Cartesian
coordinates x =r sin(p'+4trp. ) and y =r cos(p'+4trp)
+d. The metric is ds =dx +dy +dz —dt, and ap-
plies provided x + (y —d) ) rt, and jx~ ). (y —d)
&tan(4ttp) [points with x = ~ (y —d)tan(4trp) are
identified] for y) d+rt, cos(4trp) (valid for 0~ p ~ —, ).
Consider now the three-surface y=o. It has a metric
ds =dx +dz' dt and as part o—f a (3+1)-dimen-
sional Minkowski space it has zero intrinsic and zero ex-
trinsic curvature. Thus we can make a mirror-image
second copy of the region y ~ 0 including its interior
solution and join it back to back with the first region
along the three-surface y=0 (see Fig. 1) (so that the
second solution is the region y ~0). The two copies
obey all the matching conditions along the surface y =0
because that surface in both solutions is a (2+ I )-
dimensional Minkowski space with zero intrinsic and ex-
trinsic curvature.

Consider observers 2 and 8 at rest with respect to the
cosmic strings whose world lines are given by x~ (r) =xo,
yg(r) =0, zg(r) =0, tg(r) =t and xtt(r) = —xp, ytt(r)
=0, ztt(r) =0, ttt(r) =t. As previously found, observer
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move it at velocity P, in the —x direction. The two solu-
tions y &. 0 and y (0 can still be matched together be-
cause the Lorentz transforms do not alter the fact that
boundary surface y=0 in each solution is still a (2+1)-
dimensional Minkowski space with zero intrinsic and
zero extrinsic curvature. The rocket goes from E;
through E~-E2 and arrives at event Ef which is simul-
taneous with event E; in the laboratory frame. Then by
symmetry the rocket goes in the opposite direction past
the oppositely moving string through E3-E4 and arrives
back at event E; which is simultaneous with event Ef in
the laboratory frame. The rocket has now completed a
CTC; it circles the two parallel cosmic strings as they
pass each other in a sense opposite to that of the strings'
relative motion.

Events E; and Ef in the laboratory frame have coordi-
nates E; = (y, 'xp, 0,0,0) and Ef = ( —y, 'xp, 0,0,0),
where

3' =xp/(xo wop~

FIG. 1. Two-parallel-string static solution: (x,y) plane.

8 sees three images of observer A. The central image is
from a geodesic passing through the origin 0 (see Fig. 1),
while the two outrigger images, displaced from the cen-
tral image by an angle h, 8=4xp on each side, represent
geodesics that pass through events E]-E2 and E3 E4.
(Events E~ and E2 are identified as are E3 and E4.)
Now wp =[xp —ypsin(4trp)]'+ [d+ypcos(4trp)]' and
the value of yp picked to minimize ~p is yp =xp
xsin(4np) —dcos(4trp) (see Fig. 1). Thus, wp(xp if
d &yp, and the light beam going through Ei-E2 arrives
before the light beam going through 0 with a gravitation-
al lensing time delay between the two images of
ht =2(xp —wp). If a light beam passing through E~ E2-
can beat the light beam passing through 0, then so can a
rocket traveling at a high enough velocity ptt & 1 relative
to the string. Such a rocket can therefore connect two
events in the y=0 (2+1)-dimensional Minkowski space
which have a spacelike separation. Let the rocket begin
at 2 at event E; =(xp, 0,0, —

ptt 'wp) and end at 8 at
event Ef =(—xp, O, O, ptt 'wp) (it takes the rocket a time
t =2pg wp to traverse the path E; to E 1-E2 to Ef). Tile
separation of E; and Ef is spacelike providing that
xp —

PR wp & 0, which can always be achieved for high
enough Pz & 1 since wp & xp. Now take the string solu-
tion for y )0 and give it a velocity p, in the +x direc-
tion via a simple Lorentz transformation such that the
events E; and Ef become simultaneous in the laboratory
frame: ps =wpp~ xp . Take the solution for y (0 and

2 & 2/( 2 2) — 2/( 2 d2)

[sin (4' ) 1

1 —2d/xo tan(4~p) —d'/xp
'

where we can always choose xp» d so

y, & [sin(4')]
For p =10 expected for grand unified cosmic strings,
y, & 8 x 10 in order to produce CTC's.

In the original static solution (x,y, z, t):

E )
= (x l,y|,0,0), E2 = ( —x l,y|,0,0),

E3=(—xl, —y|,0,0), E4=(x), —ytt0, 0),
where xl =ypsin(4trp) and yl =d+ypcos(4trp), but
after the Lorentz transforms have been made in y ~ 0
and y ~ 0 regions, these events now have coordinates in
the laboratory frame (x,y, z, t):

E( =(y, xl,y|,O, P, y, xl),
1'sxl, yl 0 P Y xsi)s,

E3 =(—ysx1, —y|,O, Ps ysxl),

E4 ( 1's X 1 ~ y I ~ 0~ Ps ) s X l ) ~

Again E]-E2 and E3-E4 are identified. It is possible to
travel by rocket at speed p„ in the laboratory frame from
E2 to E3 and from E4 to E i if

p„p 1' yp sin(4trp) =d+ypcos(47rp) .

Since P, ( 1 and we can always choose xp so yp)) d we
find

p, y, & [tan(4trp)] ', y, & [sin(4trp)]

as before. This represents a CTC where the rocket un-
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dergoes acceleration only at E~-Ez and E3 E4 (com-
pared with the previous solution where the rocket under-
goes acceleration only at E; and Et.). In the laboratory
frame it is clear how the CTC is created. The E]-E2 and
E3-E4 identifications allow the particle to effectively
travel backward in time twice in the laboratory frame.
The identification of E~-Ez and E3-E4 is equivalent to
having a complete Minkowski space without missing
wedges where instantaneous (tachyon) travel in the
string rest frames between E] and Eq, and E3 and E4, is
possible. It is then perhaps not surprising that causality
violations can be created.

If the dz term in parallel string metrics is deleted,
we obtain solutions for masses in (2+1)-dimensional
spacetime. Thus the above solution with z=0 (deleting
the dz term in the metrics) constitutes the general solu-
tion of the noncolliding two-body problem in (2+1)-
dimensional spacetime. Here mass is dimensionless, usu-

ally normalized to be the angle deficit. Thus CTC's are
produced when two masses M pass each other with each
having y & [sin(M/2)] ' in the center-of-mass frame.

Starting with the parallel static solution of Fig. 1, the
general solution is obtained by applying to the y )0 and

y ~ 0 solutions all Lorentz boosts, rotations, and transla-
tions that map the three-surface y=0 into itself. Thus,
the strings need not be parallel. Go to the parallel static
solution of Fig. 1 and rotate the y ~ 0 and y ~ 0 solu-
tions each by an angle p in opposite directions in the
(x,z) plane. The two solutions still match on the y=0
surface because it is still a three-surface with zero intrin-
sic and extrinsic curvature. Let world lines A and 8 in

the combined solution have x~(z) =xo, gg (z) =0, z~ (z)
=0, t„(r)=t and xtt(z) = —xo, ytt(r) =0, zg(z) =0,
ttt(z) =t. Then E~ =(xi cosP,y~, —xlsin&, 0) and Eq
=(—xicosp, yl, xlsin&, 0) so that wo =(xo xicosp)
+ (x ) sing) '+y (' and yo =xosin(4xp) cosy —d cos(4trp)
is the, solution that minimizes wo. Again wo —xo =d
—yo, so if we Lorentz boost the y ~ 0 solution by a ve-

locity PF in the +x direction and the y ~ 0 solution by a
velocity PF in the —x direction to produce CTC's, we re-
quire

2 [sin (4' p )]
cos p

—2dcosp/xotan(4trp) —d /xo

and since we can choose xo» d we require yF
& [sin(4trp)] '(cosp) ' in what follows. Now it is

only the component of velocity perpendicular to the
string which can be measured, and in the frame (P,
= —tang/yFPF & —1) which equalizes and minimizes
the measured string velocities we find that y, = yF cosp,
so y, & [sin(4trp)] ' as before.

Since the production of the CTC's relies on nothing
more than the gravitational lens eA'ect, one might
wonder whether they may be produced by simply firing
masses at each other. Two masses separated by a dis-
tance 2d and observed from a distance xq will produce

multiple images of a source at a distance xo behind
them. Consider three of these images, central one and
two outrigger ones separated from it by d, O. If yo is the
impact parameter of an outrigger lensed ray, then the
central image will be delayed relative to the other two
providing d & yo so that it passes deeper into the poten-
tial well. One of the masses produces a total deAection
258=4M/yo, where yo is the impact parameter. The
time delay is of order h, O xo. To produce CTC's, in the
center-of-mass frame we require y& (60) ' so 2yM
&yo& d. In this frame a total mass 2yM is contained

within 2d &4yM, equal to the Schwarzschild radius, so
rather than passing each other, the masses should be
pulled together to form a black hole. This can prevent
the CTC's. Cosmic strings can pass each other without
electively attracting each other. In a static config-
uration, Q=M black holes do not attract, but at high
speed, passing each other, they will attract and might
also be expected to form a single black hole.

Can cosmic strings in nature ever pass each other with

y, & [sin(4')] ? Strings achieve high velocity in col-
lapsing loops, and at kinks where y ~. An initially
static circular loop remains circular as it collapses. Its
total mass M, =pfy, dl is a constant of the motion'
(ignoring gravitational radiation). So y ~ as its cir-
cumference goes to zero. Perturb this solution slightly
(making the loop elliptical) and it collapses to a double
line. ' A slight additional perturbation (with higher-
frequency terms) creates a loop which does not self-
intersect. " Thus it should be possible to find closed-loop
solutions where nearly straight segments pass each other
at high speed. Hawking' has produced an argument
that if cosmic censorship is valid, a circular loop collaps-
ing with y=~ (approximating the final phases where

y ~) will produce a black hole with a loss of at most a
fraction 1 —2 ' =29.3% of its mass energy in the form
of gravitational radiation. Thus, while it is still outside
the horizon, M, ~ py, 4zMqH & 4zpy, 2 ' M, so y,
&2' (4trp) '. This offers some hope that black-hole
formation may in practice prevent y, from exceeding
[sin(4ttp)] '. Thorne's' conjecture that black holes
with horizons form when and only when a mass M gets
compacted into a region whose circumference in every
direction is less than 4trM would imply y, & (4ttp) for
the circular loop case. But we are interested in the case
of two long passing strings. As the strings pass each oth-
er, a thin envelope of length L and width 2d [maximum
circumference —2(L +4d ) 't ] can be wrapped around
them so as to contain a mass M —2Ly, p. So for L»d
and y, & (4trp) ', Thorne's conjecture appears to be
violated by our exact solution which does not have any
event horizons. If Thorne's conjecture were true for
finite-length string segments that were part of loops, it
could conveniently prevent the CTC's, but the exact
solutions presented here warn that Thorne's conjecture
may be violated. Kinks from separate loops may pass
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each other at high speed (but they are not approximately
straight). An advanced civilization could always in prin-
ciple accelerate separate loops to high speed by towing
them gravitationally with very massive rockets. Alter-
nately, there may even be extremely rare segments of
pairs of infinite strings that pass at high speed. Can
black-hole formation always prevent the formation of
CTC's, or hide them behind event horizons? In (2+1)-
dimensional spacetime we do not have the luxury of a
possible black-hole escape clause. There, CTC's can be
eliminated only by restricting the initial conditions or by
disallowing massive bodies.

We are left with a number of questions. Is it possible
that with the weak energy condition (WEC) CTC's visi-
ble from infinity can be produced with sources that ex-
tend to infinity (like the exact string solutions above and
Tipler's rapidly rotating infinite cylinder ' ), but for finite
sources with realistic initial conditions any CTC s are
hidden behind event horizons' [as in the analytic con-
tinuation of the Kerr-Newman a +e ~ m (a eO)
metric' ], unless the averaged WEC is violated as in the
wormhole' solutions? Or could there ever be finite, non-
singular WEC sources that produce causality violating
regions extending to infinity like the above exact string
solutions and the Kerr-Newman a + e )m (a &0)
naked ring singularity? ' ' Normally we wish to pre-
vent solutions with causal paradoxes. Linde' has pro-
posed that chaotic inAation can produce universes with
diII'erent macroscopic dimensionalities of spacetime. Do
we wish to disallow (2+1)-dimensional spacetimes be-
cause they can produce CTC's in specific cases? Do we
wish to disallow cosmic strings because they can in prin-
ciple produce CTC's or can we in practice always rely on
black-hole formation to prevent CTC's? Alternatively,
should the existence of these solutions push us to accom-
modate CTC's using a principle of self-consistency'? The
solutions presented here should be useful in future

causality studies.
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