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l(a)

Two quantum systems are identically prepared in different locations. An observer’s task is to deter-
mine their state. A simple example shows that a pair of measurements of the von Neumann type is less
effective than a sequence of nonorthogonal probability-operator measures, alternating between the two
quantum systems. However, the most efficient set of operations of that type that we were able to design

falls short of a single combined measurement, performed on both systems together.

PACS numbers: 03.65.Bz, 89.70.+c

It is well known' that composite quantum systems,
consisting of noninteracting parts, can possess nonlocal
properties. In particular, a composite system can exhibit
correlations which cannot be reproduced by any theoreti-
cal model that involves only variables belonging to each
subsystem separately. A typical example is a pair of
spin- 5 particles produced by the decay of a spinless ob-
ject. Their combined state, 2~ "2(J1|)—||1)), cannot
be reduced to a direct product by any transformation of
the bases pertaining to each one of the particles.

In this Letter, we consider a different kind of compos-
ite system. Its parts never interacted in the past. They
may have been prepared in different laboratories. How-
ever, they were prepared according to the same set of in-
structions. Therefore, these subsystems are in the same
quantum state—insofar as their internal variables are
considered. For example, we may have two noninteract-
ing spin-§ particles, prepared with the same polariza-
tion. We consider in this Letter a particular example in
which there are exactly three possible states for the two
particles: Both spins may be directed along the z direc-
tion, or both may be in the x-z plane, tilted at 120° or
—120° from the z axis. (We have chosen this particular
setup because the three possible states of each particle
satisfy (yilvoXyalwsXys|ly))=— ¢, and this is the
most negative value obtainable for such a triple prod-
uct.) We refer to the three special directions as the “sig-
nal directions.”

Suppose now that an outside observer wants to deter-
mine which one of these three known preparations was
actually implemented. The answer cannot be unambigu-
ous, because the three states are not orthogonal. The ob-
server may nevertheless assign probabilities to the vari-
ous preparations. The problem thus is to design a mea-
surement procedure which minimizes the unavoidable
uncertainty of the result. The original purpose of our
work was to determine whether more information could
be obtained by means of an apparatus interacting with

both particles together, than by separate measurements
performed on each one of them individually. An exam-
ple of a measurement of the former type— which we will
call a combined measurement—is the one represented by
the “entangled” operator in Eq. (3) below.

Despite considerable efforts, we have not been able to
obtain a complete answer to our question. Nevertheless,
the results are intriguing. In particular, we have found a
new measurement technique, acting on each particle sep-
arately, which yields more information than any
separate-particle method hitherto known. Our best stra-
tegy of that type is, however, not as efficient as a well-
chosen combined measurement. Thus our work suggests
that one can indeed obtain more information by measur-
ing the two particles together, but the results are not
conclusive. We propose as a challenge to our fellow
theorists either to find a better separate-particle strategy,
as good as the combined measurement, or to prove that
this aim is unattainable.

To give a precise meaning to our problem, we need to
quantify the notion of information gained from a mea-
surement. We will use the standard measure of informa-
tion developed by Shannon.? If the probabilities of the
various possible states are P(s), the corresponding
knowledge is assigned an entropy H = — X, P(s)log,P(s)
(measured in bits). Performing a measurement alters
the values of the various P(s). The amount of informa-
tion I, gained from the measurement, is the amount by
which the entropy is reduced: I=Hipitial — Hfinal- Typi-
cally, some outcomes provide more information than oth-
ers. A measurement scheme is optimal if it maximizes
the average information gain. This information-the-
oretic approach has led to interesting insights in the
properties of composite quantum systems. >

In the particular model which we are considering,
there are three possible preparations (or signals). If they
are equally probable, then the initial entropy is log,3
=1.58496. After a measurement is performed, with re-
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sult r, the a posteriori probability for preparation i is
given by Bayes’s theorem as P(i|r) =P(r|i)PG)/P(r),
where P(r) =X, P(r|i)P (i) is the a priori probability for
the result r. In these formulas, the conditional probabili-
ties P(r|i) are known (from quantum mechanics) and
the a priori probabilities P(i) are assumed. The expect-
ed final entropy is

(H nat) = — 2P (r) [ZP(ilr)logzP(iIr)] : )

Our problem is to find a measurement procedure which
minimizes this expression.

The simplest strategy is to perform separate Stern-
Gerlach (SG) measurements on the two particles. The
best result is then obtained as follows. The first particle
is tested along one of the signal directions. If the result
is positive, the second particle is tested along the same
direction. If it is negative, it is tested in the perpendicu-
lar direction. The resulting average information gain is
1.05228 bit. Note that information has to be carried
from the first instrument to the second one, in order to
position the latter. This is, however, information of a
classical nature, such as a paper printout of the first re-
sult. This process is essentially different from the trans-
port of quantum information, encoded in nonorthogonal
states. The difference is that classical information can
be amplified at will and can thus be reliably transported
over large distances, whereas quantum information can-
not be amplified, because single quanta (allowed to be in
nonorthogonal states) cannot be “cloned.”* The ques-
tion we raise in this Letter is whether one can learn more
about the state of the composite system by allowing the
transfer of quantum information, and not just of classical
information.

Indeed, a much better result can be achieved by treat-
ing in a global way the quantum information encoded in
the two disjoint particles. Let us denote the three
preparation states of the pair by |a), |b), and |¢) (for ex-
ample, |a)=|11)). Define

|4)= L [54+8(18)'21'2|q)

— +118—4018)"21'2(|p)+|c)) , )

and likewise define |B) and |C), by cyclic permutations.
The three states |A4), |B), and |C) are orthogonal and
normalized. They were chosen to be close to the three
preparation states. A fourth vector is the singlet state
|S) (total spin 0) which is orthogonal to the three
preparation states, each of which has total spin 1. Our
strategy is to measure, on the composite spin-1 system, a
dynamical variable whose eigenstates are |A4), |B), and
|C). One such variable is

|BXB| —|CXC|l=(E)"2), — ()2, 0, +7,7,), (3)

where each angular momentum component, J; = + (oy;
+02;), can be represented by a Hermitian matrix of or-
der 3. Any variable of this type can be measured by a

1120

generalized SG experiment.® For this particular mea-
surement, the expected information gain is 1.36907 bit,
a substantial improvement over the proceeding result.

The situation described here is just the converse of the
one leading to the violation of Bell’s inequality.! In
showing that quantum mechanics does not satisfy that
inequality, Bell used as “entangled” (nonfactorizable)
state, but ordinary products of spin operators. Here, it is
the state which is factorizable, and the operators which
are not. However, the result which was just derived is
not enough to establish what might be regarded as a new
kind of quantum nonseparability, namely, that one needs
a nonfactorizable measurement to get the most possible
information. This is because the SG measurements we
considered are not the only measurements one can per-
form on a spin-3 particle. They are a special case of
von Neumann measurements,® which, although the most
widely known, are neither exhaustive nor typical of real
measurements.

In a von Neumann measurement, the various out-
comes are associated with orthogonal projection opera-
tors P, satisfying 2P, =1 (where 1 is the unit operator),
and the probability on the nth outcome is given by
(y|P,|w). However, instead of using a set of orthogonal
operators, it may be preferable— indeed it is known to be
preferable in many cases—to associate the final out-
comes with a more general set of noncommuting positive
operators A,, satisfying >4,=1. The probability of
getting the nth outcome is {y|A4,|y), so that this set of
A, forms a probability-operator measure (POM).”:?

To show that such a POM is physically realizable, one
relies on Neumark’s theorem.®'® The latter asserts that
one can extend the Hilbert space of states #, in which
the POM is defined, in such a way that there exists, in
the extended space #, a set of orthogonal projection
operators satisfying 2P, =1, and such that A4, =I1P,II,
where IT is the projection operator from # into #. The
practical realization of Neumark’s theorem involves a
method analogous to heterodyne detection in communi-
cations engineering: The system (signal) to be observed
is combined with another known system (signal), some-
times called ancilla.!" Thereafter, a standard von Neu-
mann measurement, corresponding to projection opera-
tors P,, is performed on the combined system. The prob-
ability of obtaining the nth outcome is {yd|P,|Dy),
where @ is the ancilla’s initial state (which is known).
This probability can therefore be written as (y|A4,|y),
where A, =(®|P,|®) is a positive operator. Notice that
the number of outcomes may be greater than the dimen-
sion of the original Hilbert space #£.

The amount of information that can be obtained in
this way about a physical system can be larger than if
the observer is restricted to von Neumann measure-
ments, without ancilla. There are theorems'?!? limiting
that amount of information. However, these theorems
are not directly applicable to our current problem
—namely, how much information can be gathered by
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testing each subsystem separately. This condition re-
stricts the admissible Hamiltonians, as well as the admis-
sible initial states of the ancillas and apparatuses (these
states must be factorizable). It therefore restricts the
class of operators which are measurable.

In the remaining part of this Letter, we shall consider
a number of separate-particle measurement schemes, al-
lowing one to increase the information gain beyond
1.05228 bit (its value for two simple SG measurements)
toward successively higher values, but without being able
to reach 1.36907 bit, which results from the combined
procedure. For the sake of brevity, we shall discuss this
matter solely in terms of POM components (namely, the
2-by-2 matrices A,) without making explicit use of an-
cillas. An explicit procedure for preparing ancillas is de-
scribed elsewhere. '°

The simplest improvement is to replace the first SG
measurement by a nonorthogonal POM with 10-12

Note that 34;=1. For example, if the signal state is
|u/|), the probabilities of the three outcomes of the POM
are (yi|4ily1)=0 and (yi|A|ly) =(yi|4;]ly))=1.
The result of performing this POM is thus to rule out
definitively one of the three signal states, and to leave
equal a posteriori probabilities for the two others.'* The
next step is an ordinary SG test performed on the second
particle, along a direction perpendicular to the one
selected by the first particle’s POM (for example, if A4,
yielded “yes” so that one can rule out |y,), the second
particle shall be tested along a direction perpendicular to
that of signal |y)). The resulting information gain is
1.230 38 bit.

This result can further be improved by an iterative
procedure which involves more than two steps: Instead
of executing a conclusive measurement on the first parti-
cle, and then on the second one, we shall perform a se-
quence of “fuzzy” measurements, minimizing the distur-
bance to the systems under study. This requires a new
notion: pure and mixed POM elements. The definition
is analogous to that of pure and mixed density matrices.
A POM element is pure if it is represented by a matrix
of rank 1: A,=|uXu|, where |u) may not be normal-
ized. A mixed POM element can be represented as
Zc,,lu,,)(u,,L where all the ¢, are positive. In the partic-
ular setup that we are considering, it is convenient to
represent POM elements by three parameters:

AWy, pp,a,) =w,[1+p, (o, cosa, + oy sina,)], (5)

where 0 <w, <1 and 0 <p,=<1. The weights w, and
purities p, must satisfy 2w =1 and Xwpe'®=0, so that
2A=1.

We again introduce a new notion: the refinement of a
mixed POM element, which is its decomposition

Aw,p,a) =2 A(wg,ps,a;) , (6)

where Xw,=w and Xw,p,e'™“=wpe’®. The term
refinement originates from the mechanism used to break
a POM element into a sum of positive matrices. Consid-
er in the extended Hilbert space # (representing the sys-
tem under study together with its ancilla) a unit subma-
trix P of rank n>1. It can be written as P=YP,,
where the various P; have ranks <n and satisfy P,P;
=§,;P;. Define 4A; =I1PIl, which is a POM element in
7. Obviously >4, =TIPTI=A. We do not always have
ps > p, but, if this process is repeated until all P; have
rank 1, the result must be either w; =0 or p; =1, namely,
pure POM elements which can no longer be refined.
Note that the method of breaking P into 2P, is not
unique and is at the discretion of the observer.

We shall now explain the iterative separate-particle
measurement strategy which yields a result better than
1.23038 bit. We start by performing on one of the parti-
cles a low-purity POM, consisting of elements such as
3 (1 —p)+pA;, where A; is given by Eq. (5). Accord-
ing to the result of the test, we choose another low-purity
POM for the second particle. Its outcome then instructs
us how to refine the first particle’s POM, and so on. The
process is repeated many times, until we end up with two
pure POM elements, with angles a and 8. The final in-
formation gain depends only on a and B (not on the in-
termediate results) and it is maximal when a and g lie
on different sides of a signal direction, and 60° from it.
Reasonably good results are obtained in the range 40° to
75°. The problem is to find a refining method which
steers a and S into the favorable configuration.

We have tried numerous strategies and simulated their
outcomes by Monte Carlo methods. The best result was
obtained as follows. In the first, low-purity step, ¢ and B8
are brought to different sides of a signal direction.
Thereafter, each POM element with angle a is broken
into two, with the new angles a' and a" equally distant
from the signal direction which is most distant from g
(and vice versa). This tends to keep @ and B in the
favorable region. We thereby obtained (/) =1.26205 bit,
with a standard deviation of 0.11748 (there were 10°
runs, each one involving 100 purity steps).

It is likely that better algorithms can be devised, but
we doubt that the result 1.36907 bit, obtainable by
means of a combined measurement, can be approached
by any variant of our POM refining method. This leaves
two possibilities: A radically new separate-particle
method yielding 1.36907 bit, or a formal proof that this
goal is unattainable.
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