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Reversibility and Noise Sensitivity of Josephson Arrays
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We predict that series arrays of point-contact Josephson junctions, shunted by a resistive load, should
be unusually sensitive to noise. This behavior stems from a dynamical symmetry which prohibits the ex-
istence of in-phase attractors. Simulations verify that breaking the symmetry can radically improve the
phase-locking performance of the array.

PACS numbers: 74.50.+r, 05.40.+j, 05.45.+b, 74.40.+k

Josephson-junction arrays hold great promise for fu-
ture technologies, including high-frequency voltage
sources, voltage standards, parametric amplifiers, and
generators of squeezed states in quantum electronics. '

At the same time, these arrays are of fundamental in-
terest as examples of nonlinear dynamical systems with
many degrees of freedom. Recent work has shown that
these two perspectives are not disjoint: An understand-
ing of the underlying structure of the circuit equations
can give insights into the performance of various ar-
rays.

Viewed as a dynamical system, each junction is a non-
linear oscillator. As a practical matter, very large arrays
are desirable because individual junctions generate rela-
tively little power. Consequently, researchers are in-
terested in large arrays: If the junctions oscillate in per-
fect synchrony —so-called in-phase operation —the total
power generated by an array of N junctions is expected
to scale as N . Thus, the fundamental problem is to un-
derstand the phase-locking properties of N coupled oscil-
lators, i.e., the conditions under which the in-phase state
is an attractor for the dynamics.

Hadley and co-workers have mapped out stability dia-
grams of the in-phase state for a variety of array
configurations, based largely on numerical integration of
the circuit equations. More recently, more sophisticat-
ed bifurcation analyses have been employed to get im-
proved predictions for certain geometries.

In this Letter we show that certain Josephson arrays
possess an important dynamical symmetry which has
far-reaching effects on the observed dynamics. Curious-
ly, despite the presence of dissipative elements, the
governing equations obey a kind of time-reversal invari-
ance, which prohibits the existence of in-phase attrac-
tors. This, in turn, has fundamental consequences for
the performance of the arrays, in particular, as regards
the robustness of the in-phase operation at finite temper-
atures. On the other hand, altering the coupling load
can remove the symmetry, leading to dramatically im-
proved performance.

Consider a linear array of % Josephson junctions (see
Fig. I). The array is driven by a constant bias current
I~,. the junctions are coupled via a parallel load resistor

R. The governing dynamical equations are

(h/2er)tttk+I, sinttk+I =I&,

m=v(t) =
2e j
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FIG. 1. (a) Power spectrum of the total voltage across an
array with a pure resistive load, from simulation of Eqs. (1)
and (2a), with N=5, R =12.Sr, and Ie =3I, Frequencies are.
scaled by the fundamental frequency of the noise-free system.
The solid line is for noise intensity ~=0; the circles are for
rc=SX 10 'hI, /2er. The length of each time series is about
8400 oscillation periods. Inset: Schematic of circuit. (b)
Power spectrum with LC load, from simulation of Eqs. (1) and
(2b), with N =5, L =Sh/2el„C=0. 1 h/2el, r, Ie =2.1431„
and tc =0 (solid line), rc =5 x 10 'hI, /2er (circles), tc =5
x 10 hI, /2er (triangles). Inset: Schematic of circuit.
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where k =1, . . . , N. Here, I is the current passing
through the load, pk is the phase difference of the macro-
scopic wave function across the kth junction, r is the
junction resistance, I, is the critical current, e is the elec-
tron charge, 6 is Planck's constant divided by 2x, and
the prime denotes diAerentiation with respect to time. In
Eq. (1), which follows from current conservation, we
have assumed that the capacitance of the Josephson
junctions is negligible, which is appropriate for a variety
of junction types, e.g. , superconductor-normal-metal-
superconductor junctions. Equation (2a) states that the
voltage across the load resistor is equal to the vo', tage
V(t) across the entire array. Note the crucial role
played by the load: In its absence, the junctions are
completely uncoupled; only in its presence will the volt-
age oscillations of the individual elements interact.
Ideally, one wants to find operating conditions under
which the coupled array settles into the in-phase state, so
that y;(i) =pl(t), for all i.

Simulations of the dynamical behavior of this array
are revealing. Figure 1(a) shows the power spectrum of
the total voltage across the array, V(t), obtained by nu-

merical integration of the governing equations, both with
and without the inhuence of external noise. The system
is initially put in the in-phase state, i.e. ,

at t =0. As expected, in the absence of
noise, the individual oscillations add coherently, leading
to a sharp line at the fundamental frequency. However,
the presence of weak noise sources leads to a substantial-
ly degraded output. Specifically, the noise was modeled

by adding a random term Wicgk(r) to Eq. (1), represent-
ing the noise current due to the individual junction resis-
tances. The gi (t) are independent &correlated random
functions with zero mean and unit variance; rc is propor-
tional to the power of each noise source.

Note that this noise sensitivity is not inevitable. In
Fig. 1(b), the resistor R is replaced by a different load,
namely, an inductor and capacitor in series. The param-
eters have been chosen so that the resulting power spec-
trum of the noise-free system is nearly identical to the
case of the pure resistive load. Despite the similarity of
the noise-free behavior, we see that now the dynamics
are far more robust in the presence of noise —in fact,
even with an input noise power 100 times greater than
that used in Fig. 1(a), the spectral line in Fig. 1(b) is

hardly broadened at all. (Note that the improved per-
formance is not due to resonance: The LC resonant fre-
quency is well separated from the observed frequency. )

We now show that the behavior displayed in Fig. 1 can
be traced directly to the structure of the dynamical equa-
tions governing the arrays. In particular, we note that
Eq. (1) is invariant under a kind of time reversibility,
namely, the transformation (pk, t) (ir —pi„—r); Eq.
(2a) also has this symmetry. (Recall that pk is a phase,
defined modulo 2ir. ) Note that this symmetry is not
respected by the LC load, for which the voltage equation

(2a) is replaced by

Ll'+ — I(s)ds = V(t) =
aJ 0 2e j

(2b)

where cu is the oscillation frequency, and a is the ampli-
tude at the fundamental frequency; higher harmonics are

where L and C are the load inductance and capacitance,
respectively.

The existence of reversibility has dramatic conse-
quences for the observed dynamics. As we now show, it
follows that any such system has no in-phase periodic
attractor. Suppose first that there is an asymptotically
stable in-phase periodic orbit, denoted by I . Then, any
initial condition fgkl sufficiently close to I must ap-
proach I as t~ ~. On the other hand, the orbit start-
ing from the symmetry-related point br —Pkj must ap-
proach the symmetry-related version of I, but as
t —~. But the symmetry-related version of I is I it-
self. So, vie~ed in forward time, we have the situation
that for every trajectory attracted to I, there is another
trajectory which is repelled from I. It follows that I is
not an attractor.

Though simple, this observation is a very strong one.
For example, it was previously shown that the in-phase
state of the circuit of Fig. 1(a) was linearly neutrally
stable. ' This was based on a linear stability analysis;
however, such techniques are not su%ciently powerful to
determine the nonlinear eA'ects, which in this case dom-
inate (since the linear terms vanish). We see now that
the in-phase state is not attracting; moreover, any
modification of the array which retains this symmetry is
likewise prohibited from having an in-phase attractor.

The neutral stability of the in-phase orbit causes the
system to be unusually sensitive to noise, and results in

the broad spectral line in Fig. 1(a). We now present a
simple heuristic approach to finding the scaling of the
power spectrum, as a function of the noise strength rc

and the array size %. A rigorous calculation would re-
quire the study of a large system of nonlinear, coupled
stochastic diAerential equations. However, we believe
the following calculation correctly captures the essential
phase-space geometry of the full problem, and so should
yield sensible results.

We now estimate the power spectrum. The allowed
values of the Pi, define an N-torus; the in-phase orbit lies
along the diagonal pl =pq= =P~. For a pure resis-
tive load, the random perturbations cause the orbit to
difIuse over the entire IV-torus. For low noise levels, this
diftusion is very slow; nevertheless, in the long-time limit,
the system freely diff'uses over the whole torus.

Based on this picture, we can estimate the expected
power spectrum. The voltage across the kth junction is
proportional to p/„which we approximate by

pp =co+0 cos[cor + Qg (I )),
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ignored here. Because of the slow diA'usion, the relative
phases ak(t) are taken to be independent continuous-
time random walks. These variables at(t) may be con-
sidered phase-space variables on an N-torus. In order to
capture the essential feature of neutral stability in the
simplest possible way, we take Langevin equations ak
=gq (t), where the gk represent independent white-noise
processes with zero mean and variance x. Taking initial
conditions that all the ak(0) =0, the joint probability
density is therefore

P(a(t) ) =+ (2na') 't'exp
k 20'

where a=(a~, . . . , a~), and a =2xt It is. a straight-
forward matter to compute the autocorrelation function
(V(t)V(t+r)) and the corresponding power spectrum
S(A), with the result

S(Q) =Na
K' + PC

tc'+(n —o))' x'+(a+co)'

S(Q) =a N(N —1)exp( —tc/X)h(Q —to)+broadband.

Comparison of the power spectra for these two cases
reveals two important points. First, the total (integrat-
ed) power scales as N for the LC load, but only linearly
with N for the R load. In eAect, the absence of an in-
phase attractor results in incoherent superposition of the

where we have suppressed the 8'-function contribution at
n =0.

A similar calculation can be performed for the LC
load, in which case it is possible to have an in-phase at-
tractor, according to numerical simulations. The above
phase-space picture is now modified, so that the ensem-
ble of phases freely diff'uses along the limit cycle, but is
attracted to it in N —1 perpendicular directions. The
simplest Langevin equations of this type are aI =(~(t),
ak = —kak+gk(t), k & 1, which imply that the proba-
bility density has the same form as before, but with
widths given by

o) =2K'E,

al, =(&/2X) [1 —exp( —2kt)), k =2, . . . , N.

Here, A. is the Lyapunov exponent of the limit cycle;
physically, X measures the strength of the attraction in
the neighborhood of the in-phase state. In an ensemble
picture, one imagines that the probability density is
confined to a band of width tc/2k in each of N —1 direc-
tions orthogonal to the attractor, centered on the in-
phase state; meanwhile, the system is free to diA'use

along the limit cycle. Though the calculation of the
power spectrum is somewhat lengthy, the dominant re-
sult is easy to understand: Instead of a broadened line,
there is now a 8 function at 0 =m, in addition to a small
broadband contribution:

oscillations of the individual elements, while the presence
of a limit cycle leads to coherent superposition. Note
that the coherence is not quite perfect [scaling as
N(N —1) rather than N ] owing to the neutral stability
of the dynamics along the in-phase orbit, which is a gen-
eral feature of limit cycles in autonomous dynamical sys-
tems. Naturally, this imperfect coherence is negligible
for large arrays. The second major result is that the
width of the line for the R load is proportional to the
noise strength K, while for the LC load the line remains
sharp, though somewhat smaller in magnitude. These
characteristics are consistent with the spectra of Fig. 1.

Since the above eA'ects are the result of an underlying
symmetry, it is important to consider what happens if the
symmetry is only slightly broken. For example, we have
considered the case where the junction capacitance is
negligible, and this is not always the case, for example,
in large-area tunnel junctions. Dynamically, this results
in the presence of a second derivative in Eq. (I ), which
breaks the reversibility symmetry, and may render the
in-phase orbit asymptotically stable. This is consistent
with previous numerical results, ' which showed that
in-phase operation was stable for nonzero capacitance,
but ever more weakly so as the capacitance decreased to
zero. On the other hand, the results described above are
valid as long as the symmetry is intact, even for substan-
tially diA'erent circuit configurations, including two-
dimensional series arrays.

A second important question involves whether the
noise sensitivity displayed in Fig. 1(a) persists for arrays
consisting of nonidentical junctions, an issue of obvious
practical importance. This is a di%cult problem, since
the locked state no longer corresponds to the simple case
where p~ =pk for all j and k. Physically, however, we
expect that making the junctions diff'erent would reduce
their tendency to phase lock, leading to an even worse
degradation of the spectral line in the presence of noise.
Indeed, numerical simulations verify this picture. At the
same time, the robustness against noise displayed in Fig.
1(b) should also persist for arrays of nonidentical junc-
tions, since the sharpness of the spectral line is spe-
cifically due to the presence of an attracting orbit, and
not the existence of underlying symmetries. In this case,
however, while the line remains sharp, we might expect
its amplitude to diminish as a spread in junction parame-
ters is introduced.

Finally, we note that the presence of a symmetry in-
volving time reversal is somewhat unfamiliar considering
the dissipative nature of the physical system. In fact, we
have seen that manifestly diminishing the dissipation, by
replacing the load resistor by nondissipative elements,
can destroy the dynamical reversibility. We emphasize
that analogous time reversibility has been reported previ-
ously by researchers studying problems involving dissipa-
tive dynamical systems. In particular, such reversibility
arises in a laser system studied by Politi, Oppo, and
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Badii, '' and in the study of particle sedimentation in a
highly viscous Auid. ' ' As we have found in the
Josephson-junction array, the presence of reversibility
has important consequences for the observed dynamics in
those problems as well.
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