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A general quantum theory of continuous photodetection is applied to an initially squeezed state to
clarify effects of quantum-mechanical measurement backaction on a highly nonclassical field. The
remaining photon field is found to oscillate in time between super- and sub-Poissonian photon statistics
due to the backaction of the photon-number measurement.
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Recently, a general quantum theory of continuous
photodetection process has been developed that describes
a nonunitary state evolution of a measured photon field,
and the theory has been applied to explore time evolu-
tions of typical quantum states.'™® This has shown that
state reduction depends strongly on both initial photon
statistics and readout information (photoelectron statis-
tics). The physical origin of the change in photon statis-
tics brought about by measurements is identified as the
renormalization of the density operator associated with
the vanishing probability of a vacuum state. In this
Letter, we apply this general theory to an initial state
that is highly squeezed; in particular, we report novel
measurement-induced oscillations of the initially highly
squeezed state between super- and sub-Poissonian photon
statistics. Measurement backaction on the observed sys-
tem is shown to play an essential role in yielding such a
novel phenomenon.

We consider photon counting for a single-mode field
inside a cavity and discuss the time evolution of the den-
sity operator of the field remaining inside the cavity dur-

ing photon counting. According to measurement, we cal-
culate’ the photon statistics remaining inside the cavity
at time ¢. In particular, we show that if one photon is
detected instantly at time ¢, then the conditioned statisti-
cal moments of the remaining photon field undergo vari-
ous oscillations depending upon the initial quantum state
of the field.

Let us briefly review the time evolution of a remaining
photon field where we read out all information concern-
ing registrations of photocounts in real time throughout
the measurement period. Such a process is referred to as
the quantum photodetection process of forward re-
currence times (QPF).! The continuous photodetection
process consists of two elementary processes, i.c., one-
count and no-count processes described by the super-
operators J and S, respectively.'™® Suppose that a mea-
surement process started at =0 and ended at ¢t =T, and
that m photons were registered at times 7; (j=1,
2,...,m) with no further photons registered during the
measurement period. Then the density operator of the
photon field, pSPF(rl,rz, ..., Tm;0,T), immediately after
the measurement process is given by !>
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where p(0) is the initial density operator of the photon field, @ (4') is the creation (annihilation) operator of the
relevant mode of the photon field, and A represents the probablllty of one photoelectron being reglstered per umt time
per one photon The two superoperators are defined as Jp(t)=Adp(t)a' and S.p(t)= exp[—(zw+ Matadlp@)
xexpl(io — +A)a%dr]. Because the right-hand side of Eq. (1) no longer depends on z; (j= .,m), we will
henceforth denote the quantity pRFF (71,72, . . ., Tm;0,T) simply as pQPF(T).

The denominator of Eq. (1a) is denoted as P(f‘"w‘“d)(r T2, . . ., Tm;0,T) which is called the probability distribution of
forward recurrence times (PDF).® The kth-order photon-number moments, {(n*(t *))=TrlpQ* () (a'a)*] k=1,
2,...), immediately after the QPF can be expressed in terms of the PDF as?
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Here we introduce the Fano factor F(z) which is defined as the ratio of the photon-number variance, {[An(t)]%)=
(n2(1))—<(n(t))?, to the average photon number, (n(z)), i.c., F(¢)=([An(t)1%)/{n(¢)). This factor takes values greater
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than unity for super-Poissonian states (e.g., thermal state), less than unity for sub-Poissonian states, or equal to unity
for Poissonian states (e.g., coherent state).

We now apply this theory of continuous photodetection process to a quadrature-amplitude-squeezed state, which is
generated from a coherent state |a) via a unitary transformation,® ie., |a,r)=S(r)D(a)|0). Here S(r)=expirla’
—("21/2}, D(a)=explad’—a*ad), and |0) are the squeezing operator, the displacement operator, and the vacuum
state vector, respectively. The initial density operator of this squeezed state is then given by p(0) =|a,rXa,r|. We as-
sume for simplicity that a is real and the squeezing parameter is non-negative, r = 0. Then, the density operator of the
initially squeezed state in the QPF is given as®

oo (u+v)/2
pQPF(r) = le(t) MZ_O \/;11'7 ta;hr ] exp(—iQut +iQ*ve)Hy4m [—\/si:%]fwm l:ﬂ% v, (3)
where @ =w — ¥ i\, N,,,(¢) is a normalization constant, and H,(z) are the Hermite polynomials, i.e.,
m 2
Nm(t)‘=‘2’”{ ;y'" a _;2) 77 €Xp lz_fy si:th ] } }y=emmnhr , (4a)
H,,(z)E(—1)"exp(zz)%"nexp(—zz). (4b)
Hence the PDF is®
plorward)(z 0 1m0,T) =N,,,(T)M£;:lexp —inl 7;+a*(tanhr—1) | . (5)

Now let us explore the time evolution of a highly
squeezed state (i.e., for large r) in the QPF. Figures
1(a)-1(c) show the time development of the average 10
photon number, the photon-number variance, and the
Fano factor, respectively, in the QPF, calculated using N
Egs. (2) and (5). It is assumed that photons were = . T
detected at 7, ...,7s. From the figures we find that in £
the no-count process both the average photon number
and the photon-number variance decrease monotonically
in time, but that the photon-number variance decreases
more rapidly than the average photon number. Hence, 10 (b)
the Fano factor decreases monotonically in this process. —~
On the other hand, in the one-count process the average
photon number decreases, whereas the photon-number
variance increases. Hence, the Fano factor increases — |
abruptly in this process. Therefore, the time develop-
ment of the Fano factor shows oscillations as time
progresses. In general, the Fano factor decreases mono- (¢)
tonically from F>1 to F <1 in the no-count process,
while it increases abruptly from F <1 to F>1 in the
one-count process. This phenomenon may therefore be
referred to as “measurement-induced Fano-factor oscil -
lations.”” Such novel oscillations generally occur when
the following two conditions are satisfied: (i) the squeez- 0
ing parameter is large (large r > 0) and (ii) the coherent
component is large (large |a|). No Fano-factor oscilla-
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/
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tions around unity have been found when 7 is small.?
After a sufficiently long time, F(z) remains less than
unity even in the one-count process, although it ap-
proaches unity from below.

The underlying physics of the Fano-factor oscillations
can be explained as follows. The no-count process may
occur in two different situations: when the premeasure-
ment state was the vacuum state or when it had an anti-

T 1AM

FIG. 1. Temporal developments of (a) the average photon
number {n(¢)), (b) photon-number variance {[An(z)]1%), and
(c) the Fano factor F(¢) in the QPF, where At € [0,1]. The
initial state is chosen to be the quadrature-amplitude-squeezed
state with a=8.0 and r=1.1. One-count processes are as-
sumed to occur at 7j,...,74. Measurement-induced Fano-
factor oscillations are clearly seen in (c).
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bunched property. Since the probability of the vacuum
state is very small for a highly squeezed state with a
large coherent component, the first situation is unlikely.
The more likely situation is that the measured field is an-
tibunched. Since antibunching leads to a sub-Poissonian
property within a time shorter than a certain characteris-
tic time, '!! we can conclude that the measured field is
sub-Poissonian. Thus the Fano factor decreases from
F>1 to F<1. (Note that a highly squeezed state ex-
hibits a super-Poissonian character.) As time passes in
the no-count process, however, the contribution of the
vacuum component becomes more and more significant
until it overwhelms the second situation. The Fano fac-
tor thus starts to increase even in the no-count process
and approaches unity. In fact, when only no-count pro-
cesses occur, the Fano factor first decreases from above
to below unity, and then it gradually increases towards
unity from below, as shown in Fig. 2.

On the other hand, the one-count process modifies the
matrix elements of the density operator as’

+) = Vim+1)(n+1)
(n(2))

The matrix elements with large m and n [such that

(m+1)(n+1)>(n(¢))? are enhanced by the one-count

process. This results in an enlargement of the photon-

number variance; that is, the tail part of the photon-
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FIG. 2. Temporal developments of (a) the average photon
number (n(z)), (b) the photon-number variance {[An(¢)]?),
and (c) the Fano factor F(z) during the no-count process,
where Az € [0,40]. The initial state is chosen to be the same as
in Fig. 1.
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number distribution function is enhanced to enlarge the
photon-number variance and to yield a jump in the Fano
factor to above unity, particularly in the highly squeezed
state.

We recall the fact that whether the Fano factor in-
creases or decreases in the one- or no-count process de-
pends on the third cumulant of the photon number,
([An(2)1%); that is,3

+)= ([An ()12 = [F()12+{an @)1/ n())
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for one- and no-count processes, respectively. In classi-
cal states, the Fano factor never becomes less than unity.
Therefore, we can observe that the Fano-factor decrease
across unity occurs only in a nonclassical state. More-
over, the third cumulant of the photon number (which is
equivalent to the skewness of the photon distribution)
of the classical states always satisfies ([An(z)]?)
= ([An(£)1»?/n(t)). Then the Fano factor must de-
crease in the no-count process because the integrand of
Eq. (7b) is negative. This inequality does not always
hold for nonclassical states. When this inequality is re-
versed F(z) increases in the no-count process, as shown
in Fig. 2(c).

As an example, we shall compare this case with the
classical case of an initially thermal state. Here, the
Fano factor decreases monotonically towards unity from
F(0)=1+(n(0)) [where (n(0)) is the initial average
photon number] as?

1+{n(0))

Faema ) = @ —e 0 ®
that is, the initially thermal state maintains its super-
Poissonian character throughout the measurement
period. There are neither discontinuous changes nor os-
cillations in the Fano factor for an initially thermal state.
Even if we choose the parameters ¢ and r of a quad-
rature-amplitude-squeezed state to satisfy F(0)=1
+(n(0)), the photon statistics of an initially squeezed
state evolve differently from those of an initially thermal
state. Moreover, in the case of an initially coherent
state, the Fano factor remains unchanged in the QPF to
take a constant value, F(t)=1 for Vi=0. Therefore,
the novel evolution of the Fano factor arises from highly
nonclassical properties of photons and is, therefore,
unique to a highly amplitude-squeezed state.

Finally, some comments are appropriate here. First,
we should note that all that we have calculated are
ensemble-averaged quantities, (n(z)), ([An(¢)1%), and
F(¢), which can be obtained not from the result of a sin-
gle measurement but from the results of many repeated
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measurements. This can be seen from the fact that they
are calculated from the density operator which is condi-
tioned on the result of a single measurement. We start
with an initial density operator which means that we
prepare a large ensemble of quantum states with the
same statistical properties. Out of this large ensemble
we select a particular set of the quantum states accord-
ing to the result of a single measurement. Even after the
single measurement, we can still discuss the statistical
properties of the field, which can be verified by perform-
ing many repeated measurements over the selected sub-
ensemble. This procedure is essential in a continuous
measurement scheme.

Second, we stress again the importance of measure-
ment backaction on the measured photon field. This
plays a key role in our analysis for a fully quantum-
mechanical measurement-theoretical photodetection
scheme. If we neglect the effects of the measurement
backaction, the Fano-factor oscillation disappears. In
fact, if we set A =0 in our formulas, then they reduce to
the results previously obtained without regard to mea-
surement backaction. Thus, novel Fano-factor oscilla-
tions depend essentially on the measurement backaction,
which has never been considered before in a unified
manner for a highly squeezed state in photodetection
processes.

Third, it is important to notice that we discuss the
density operator of the remaining field inside a cavity
during the photodetection process. This is quite different
from the treatment by other authors'? who calculated
the average number of photocounts registered in a time
interval. In fact, it has already been widely accepted
that the average photon number of the remaining field
decreases in time during a photodetection process if we
take the effects of the measurement backaction into ac-
count.'™®

Last, we should recall the fact that the photon-number

moments (n*(¢)) (including the Fano factor) contain no
information about off-diagonal elements of the density
operator. Therefore, the Fano-factor oscillations do not
result from so-called “quantum coherence,” but should
be explained from a classical probability theory. In oth-
er words, the Fano factor evolves in time by referring
only to the photon distribution p,, (¢).
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