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Stabilization of Atoms in Superintense Laser Fields: Is It Real~
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We present an argument based on classical mechanics that stabilization of real atoms in superintense
laser fields requires substantially higher frequencies than is suggested by the analysis of simplified one-
dimensional models.

PACS numbers: 32.80.Rm, 42.50.Hz

In some situations, forced fast oscillations may be em-
ployed to turn an otherwise unstable configuration of a
system into a stable one. The possible applications of
this phenomenon range from stabilization of the inverted
pendulum' to the famous Paul trap. Recently, it was
suggested that an effect of this kind should also appear
in high-frequency strong-field ionization. For a high
enough laser-field frequency mz, its further increase
should lead to a substantial suppression of the ionization,
even for ultrastrong intensities.

This fascinating result was derived by Gavrila and col-
laborators in the framework of quantum mechanics, by
means of the so-called Kramers-Henneberger transfor-
mation (the space-translation method), which transfers
the rapid oscillations of the external field to the atomic
potential. Then, by averaging over these oscillations, one
finds the effective potential describing the atom in the
high-frequency laser field. Furthermore, it turns out that
the usual ground state of the atom in such a potential is
stable against ionization in the limit of mz

The above method relies, in principle, on an expansion
in the ratio of the bare ground-state energy to the photon
energy, @too/heat. However, the electron in the ground
state of the effective potential has the smaller energy
6 N ff According. ly, the approximation used in Ref. 4 (a)
turns out to be based on an expansion in the rescaled pa-
rameter co,fr/cot, and works better the smaller this pa-
rameter is. This parameter, on the other hand, is a de-
creasing function of the laser intensity I for a fixed coz.
This implies, according to Gavrila and collaborators,
that the atom will remain in the ground state after the
turn-off of the field, and that the stabilization will be-
come more effective with growing I.

Immediately, the above prediction was severely criti-
cized, since the described approach ignores the effects
connected with introducing the atoms into the oscillating
field, and assumes the ideal plane-wave form of the field,
rather than a pulse form. Also, as pointed out by Lam-
bropoulos, nonperturbative strong-field effects can hard-
ly be observed in ionization by typical laser pulses. Full
ionization takes place in the initial growth phase of the
pulse, when the field is still in the perturbative regime.
No further absorption or emission processes by the re-

d r=v,
dt

m v= —VVc,„~(r)+eCz sin(cot t),d
dt

(la)

where Cz is the amplitude of the electric field. The clas-
sical Kramers-Henneberger transformation consists in

changing the laboratory frame to the one that follows the
classical motion of an electron in the plane-wave field,

leased electron are then possible in the developed intense
plane-wave field. Obviously, such criticism does not ap-
ply if the turn-on time is su%ciently short.

Recently, an important contribution to resolve the
above controversy in favor of the stabilization effect was
put forward by Eberly and co-workers. These authors
investigated numerically a Schrodinger equation describ-
ing the 1D model atom under the influence of a short
laser pulse, controlling the turn-on and turn-off times of
the pulse. For sufIiciently rapid turn-on they observed
stabilization of the atom, i.e., a decrease of the ionization
probability. They claim that this result shows that a
nondestroyed atom can indeed enter into the region of
strong field.

The purpose of the present Letter is to demonstrate
that the aforementioned effect of atom stabilization has
a purely classical counterpart, and that the degree of sta-
bilization depends critically on the dimension of the
phase space. We show that the significant stabilization
is reproduced in the classical version of the 1D model
atom of Eberly and co-workers interacting with short
superintense laser pulses. Then, we provide evidence
that such an effect will be substantially reduced for true
3D atoms. For real atoms, the phase-space geometry al-
lows for much more complex motion of the electrons.
This property of the phase space, accompanied, for yet
stronger intensities, by relativistic effects, makes the ob-
servation of significant stabilization substantially more
dificult.

In order to understand the stabilization of the atom in

classical terms, we shall consider an electron in a
Coulomb potential Vc,„~(r) in the field of a plane wave
of frequency coL. The classical (nonrelativistic) equa-
tions of motion, in the dipole approximation, are
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x=y —(e@L/mrot )sin(tot t), mdy/dt =x, so that

e@la= —VVC, „I y+ sin(rot t)
dt mcoL

(2)

Note that V,Ir(y) is time independent, and has typically
two attraction centers, at + e@L/moot. The corrections
to V,Ir(y) (the higher-order Fourier components) are
rapidly oscillating functions of time. Such an effective
potential was discussed for the 1D model atom in Ref. 7,
with the regularized Coulomb potential V„s(x) = —1/(1
+x )'t . The amplitude of the lowest-order correction
to V,Ir(x) decreases as a function of toL, and saturates as
a function of I. Therefore, the overall impact of the
correction remains negligible. The same conclusion
holds also in three dimensions, D =3.

The classical stabilization of an atom can be explained
as follows. A classical phase-space distribution of elec-
trons that mimics the quantum ground state in the po-
tential V,g will be concentrated in configuration space
around the two minima of V,g. After transforming it
back to the laboratory frame, such a distribution will os-
cillate with the frequency coL. Its zeroth Fourier com-
ponent describes the effective distribution of particles
(i.e., the distribution that measures how often a given re-
gion of configuration space is visited by particles from
the sample). Obviously, such an eA'ective distribution
will have three peaks, with symmetric maxima at x
=+'e@t/mtot, and a maximum around x=0 roughly
twice that large. Thus, for such a distribution nearly
half of the population will be frequently very close to the
Coulomb force center, and may remain trapped after the
field is rapidly turned off.

The above statements can be formulated also in the
quantum theory, provided that we apply them to the
wave functions rather than to the probability distribu-
tions in the configuration space. In this case, however,
additional quantum interference effects are possible.
They can limit the validity of our argument.

We have verified the above heuristic arguments using
the classical simulation of the ionization process. This
approach was introduced by Leopold and Percival, and
is widely known as a phase-space averaging method.
Here, the quantum-mechanical initial state of an atom is
approximately represented by a statistical sample of
points in the phase space. It is constructed as a micro-
canonical ensemble, by means of reversing the Einstein-
Brillouin-Keller quantization scheme. Then, this sample
is subject to the classical evolution laws [Eqs. (1) or their
relativistic counterpart], and values of the observables
are established through ensemble averaging. For in-

For large toL the potential in Eq. (2) may be replaced by
its average V,ir [Ref. 4(b)],

toL I
2'/COL egL

V,Ir(y) = dt VC,„I y+, sin(roLt) . (3)
2~ ~o P1ML

stance, the degree of ionization (after termination of the
laser pulse) is determined as the fraction of the sample
with negative energies (electrons bounded to the center).
Such a method proved fruitful for the description of
the microwave ionization of highly excited hydrogen
atoms, ' and has been successfully extended' to de-
scribe strong-field above-threshold ionization.

We have applied the phase-space averaging method to
study the stabilization of atoms. First, we have investi-
gated the case of the one 1D potential of Ref. 7. For this
potential, the quantum-mechanical ground-state energy
was E = —0.6698, in the standard atomic units. As an
initial distribution we chose the microcanonical ensemble
corresponding to this energy. We then performed a dy-
namical Monte Carlo simulation of the motion in the
presence of a short, intense laser pulse. The duration of
the pulse TD was twenty optical periods, while its fre-
quency was varying. The pulse shape was trapezoidal,

CL(t) =CLf(t)sin(rot. t+y),
where

(4a)

t/T, „, for 0 ~ t ~ T,„,
f(t) = 1, for T,„~t ~ TD —T,tr,

1 (t TD+ T tt)/T ff for TD —T,Ir~ t ~ TD
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FIG. 1. The dependence of the ionization probability on the
laser field amplitude CL, in the 1D model atom, for the "half-
photon" ionization (6mi. =2E). Stars (solid-line fit) corre-
spond to the fast turn-on (and turn-off) of the pulse, 5% of the
pulse duration (one period) each. Triangles (dashed-line fit)
represent the "adiabatic" pulse, with 40% of the pulse duration
turning on and oA'. The points were obtained in the numerical
experiment, and are endowed with a statistical error of the or-
der of a few percent.

5.0

(4b)

T,„and T,ff describe the turn-on and turn-off times of
the pulse, respectively, and Il) is the random, uniformly
distributed phase.

In Fig. 1 we present the ionization probability as a
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function of the laser pulse amplitude (in a.u. ), represent-
ing the "half-photon" ionization, 6 coL =2E. Right
above the breakdown of the perturbative regime, stabili-
zation of the atom is evident. The results are a direct
counterpart of those of Ref. 6. Moreover, a comparison
of the curves shows that the stabilization is stronger for
shorter turn-on times (solid curve), in accordance with
Ref. 5. Furthermore, we have also observed complete
cessation of the ionization, above the (more or less)
"quarter-photon" ionization (AroL )4E), for fixed roL

=2. This thresholdlike behavior is quite similar to the
one observed already in Ref. 8.

For the 3D case we have performed similar simula-
tions. The atomic Hamiltonian was that of a hydrogen
atom, while the initial state was a classical stochastic
representation of its quantum-mechanical ground state
[for details see Ref. 10(b)]. We have compared two
kinds of dynamics: (a) nonrelativistic dynamics with the
dipole approximation [Eq. (1)] and (b) true relativistic
dynamics, containing the magnetic-field effects, the rela-
tivistic mass increase, and the propagation of the plane-
wave pulse, without the dipole approximation. The rela-
tivistic equations were integrated in proper time, tied to
the pulse [cf. Ref. 10(c) for more details]. The temporal
(spatiotemporal) pulse shape was in both cases tra-
pezoidal, as described by Eqs. (4).

The results corresponding to the half-photon case, are
presented in Fig. 2. Apparently no stabilization occurs
already for case (a). For relativistic dynamics, case (b),
the ionization is even more efticient. The analogous re-
sults were also obtained for the case of quarter-photon
ionization. Here, however, the ionization is a little
smaller than in Fig. 2, which may suggest that stabiliza-
tion is perhaps possible for higher coL.
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FIG. 2. The ionization probability as a function of 8i, in
the 3D hydrogen atom, for the "half-photon" ionization
(horL =2E). Triangles (dashed-line fit) represent the relativis-
tic dynamics, while stars (solid-line fit) the nonrelativistic one.
In both cases the pulses were turned on and oA' rapidly, as in
Fig. l.

In Fig. 3 we present a comparison of the high-
frequency limit for the 1D and 3D cases. Here, we plot
probability of ionization as a function of the eAective
"photon number, "

n =E/roL, for 61. =2. There is a
tremendous difference between these two cases. For the
1D case the ionization drops to zero for AcuL~4E,
whereas for the 3D case complete stabilization" de-
mands AcoL =80E. These frequencies become unrealisti-
cally large if one considers processes starting from the
atomic ground state. However, if only the dipole approx-
imation is valid (in the nonrelativistic case), one could
make use of the well-known scaling properties of the
classical hydrogen atom (cf. Ref. 8). In effect, by means
of the substitutions uJL, XroL, E ) F., and

)I,
/ roL, one can perhaps obtain the stabilization effect

for somewhat lower frequencies, provided that we identi-
fy the initial state of the system with an appropriate
Rydberg level.

The interpretation of these results is straightforward:
Stabilization occurs for D =1 and is much more difficult
to achieve for a=3. The reason is that the region of
phase space accessible for the electron trajectories in 3D
is much larger. Note that our classical argument ex-
plaining stabilization is based exclusively on the analysis
of the configurational space, and works for particles with
+=0. In 1D, the particles move necessarily along the
direction of the electric-field polarization. Here, our
classical argument holds, provided the velocities of the
electrons in the sample are small in comparison to those
they gain under the direct influence of the electric field.
In the 1D model, the initial velocities randomize the
phase of the oscillatory motion driven by roi (t). Each
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FIG. 3. The dependence of the ionization probability on the
effective photon number, n =E/co/. . The ID case is represented
by stars (with dashed line), whereas squares (with solid line)
correspond to D=3. In both cases NL =2. Here, for the 3D
case, the relativistic and nonrelativistic dynamics yield the
same results [the importance of the relativistic corrections
scales as I/co), cf. Ref. 10(c)l. The stabilization of the true
atom becomes significant only for ultrahigh frequencies.
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time the potential center is crossed, additional randomi-
zation of the phase, caused by Coulomb forces, takes
place [cf. Refs. 10(b) and 10(c)1. In effect, after a few

passes a stationary distribution in the Kramers-Henne-
berger frame is attained.

For D =3 the initial velocities are not necessarily di-
rected along the polarization axis. During the very ini-
tial phase of the motion (close to the nucleus) quite large
accelerations of the electron are possible [Ref. 10(c)l.
The angular momentum typically increases during the
multiphoton absorption. Such eff'ects would cause the
following: In the moving frame the stationary distribu-
tion would not be so well localized around y=+'e@Ll
mcoL, but rather diff'used over a much larger region of
phase space. The diA'usion eAects should, in fact, be
larger for longer pulses. Similarly, such diffused distri-
butions when transformed to the laboratory frame will
not exhibit any particular maximum for slow (i.e. ,
trapped) electrons close to the nucleus. The destabiliza-
tion efI'ects of diA'usion in the nonrelativistic case are
enhanced in the relativistic case, due to the action of the
Lorentz force that additionally drags the electron in the
direction of the incident pulse, away from the nucleus.

Summarizing, we have presented a simple argument
based on classical mechanics that stabilization of real
atoms in superintense laser fields is extremely dif5cult.
Our theory supports, however, the prediction that it is
present in 1D model atoms, as in Ref. 7. The stabiliza-
tion of 3D atoms in short laser pulses would require ei-
ther an ultrashort wavelength of the laser light or special
mechanisms of a quantum interference origin. ' Alter-
natively, one could also look for ways of initial prepara-
tion of atoms that could compromise between a low level
of excitation and constraining the electron motion to
only one dimension, ' or, on the other hand, that could
result in preparing high-lying Rydberg levels.
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