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Quantum Spin Nematics: Moment-Free Magnetism
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Treating antiferromagnetism as a spin superfluid, we discuss the possibility of moment-free magne-
tism. Specifically, we show that large quantum Auctuations induce an anisotropy in Heisenberg spiral
structures, driving a biaxial-uniaxial transition to a spin nematic; this state is characterized by tensor
spin order and a gapless Goldstone mode of spin-pair excitations. Experimental signatures and realiza-
tions of this phenomena are suggested.

PACS numbers: 75.10.Jm, 74.65.+n, 75.30.—m, 75.50.Ee

The essence of broken rotational symmetry in Heisen-
berg systems is a finite spin stiff'ness; specifically, the de-
velopment of a local moment is not a necessary condition
for spin superAuidity. The 1D half-integer Heisenberg
spin chain, a superAuid spin system at criticality, pro-
vides a well-known example. ' In this paper we discuss
another "moment-free magnet, " the spin nematic, char-
acterized by long-range order in the tensor order param-
eter

Q'P(x, x') =(5'(x)S~(x')) —
—,
' 6'~&S(x) S(x')) .

Unlike conventional magnets, the low-lying excitations of
a spin nematic are tensor in character and correspond to
bound states of spin waves. Motivated by recent studies
of charge-induced magnetic incommensuration in doped
Mott insulators, we examine the formation of a spin
nematic in strongly fluctuating spiral spin structures.

Spin-nematic behavior was first introduced to explain
anomalous transitions in magnetic pnictides where qua-
drupolar order is driven by biquadratic interactions
H'= J(S; SJ) . Andreev and Grischuk have postulated
a second "p-type" spin nematic where the director T is a
pseudovector associated with a twist of the underlying
spin configurations:

suppression of the Auctuation renormalizations and to a
finite-temperature SO(3) vortex transition. In this pa-
per we examine the eflect of quantum Auctuations at
zero temperature in frustrated, two-dimensional quan-
tum helimagnets. We argue that the Auctuation contri-
butions to the twist make it robust against the loss of an
ordered moment; melting of a biaxial quantum helimag-
net to an isotropic spin Auid thereby occurs in two stages,
via the intermediate formation of a uniaxial p-type spin
nematic (see Fig. 1).

The essence of our approach is a quantum-Auid treat-
ment of magnetism in two-dimensional frustrated
Heisenberg models. ' From this perspective, antifer-
romagnetism corresponds to a spin condensate surround-
ed by a normal Auid of spin fluctuations. In a spin
nematic, spin-pair condensation occurs in the absence of
a local moment. To examine the development of such
phases we imagine arbitrarily twisting the spin reference
frame, introducing a "fictitious" twist vector potential AI
(l =1,2) into the Heisenberg model,

r +i
H= —, g J(R;z)S; exp —

J AldRI XS~ —gB~" S~.
J

(4)

'T(x, x') =(8S(x)XSS(x')) =F(x —x')V . (2) a)

Such anisotropic fluctuations are present in a quantum
helimagnet; here, additional symmetry breaking leads to
the development of an incommensurate magnetization in

the plane perpendicular to 7', and the system becomes
biaxial. Technically, the twist in a helimagnet contains a
"condensate" contribution from the ordered moments,

b)

(S(x)XS(x')) =V (x,x')+(S(x))&&(S(x')&, (3)

but only the first term is an independent order parame-
ter; specifically, T is responsible for the longitudinal sus-

ceptibilities and stifrnesses associated with biaxial behav-
ior in a helimagnet. ' In the presence of magnetic or-
der, Auctuations in the twist director are constrained to
lie in a plane perpendicular to the magnetization; in two
dimensions, the resulting x-y-like behavior in T leads to

FIG. 1. Pictorial representation of (a) helimagnet and (b)
twisted spin nematic.
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A.

A uniform twist vector potential Ai =QIk is equivalent
to a uniformly twisted spin coordinate axis or, alterna-
tively, twisted boundary conditions with a twist of angle
(Q„L,Q~L~) about the k axis in the x and y directions.
The stiAnesses of the broken-symmetry ground state are
found by computing the second derivative of the free en-
ergy with respect to the twist, in a manner reminiscent of
the Abrikosov-Gorkov computation of superAuid density
in a superconductor. We parametrize the frustrating in-
teractions in terms of the Fourier transform of the bond
strengths

J(q) =2J~(c +c~)+4J2(c,cJ)
+2J3(cp, +c2J)+

where c~ =cos(qua) (I =x,y) and J~,Jq, J3 are first-,
second-, and third-nearest-neighbor couplings, respec-
tively.

Following Arovas and Auerbach we adopt a
Sch winger boson representation, whereby each spin
S; =

2 b; o b; ~ is represented as an "incompressible"
ensemble of 2S spin quanta b; b; =2S. We assume that
the ground state can be characterized by a simple uni-
form twist and transform into a twisted reference frame
where spin correlations are of even parity and the twist
vanishes. Setting Ai =Qik, in the twisted reference
frame the Hamiltonian must then be decoupled in terms
of even-parity pairing fields; at the mean-field level this
is equivalent to the BCS pairing Hamiltonian

Hays =
4 g [8qq'DqDq' d"qq'Bq Bq' ]

+gk(bq bq
—2S), (6)

qa

where Bq =g bq bq and Dq =gbq bq are the Coop-
er and particle-hole pairing fields, respectively, N is the
number of sites, and

4qq'= 2 [J(q+q')+' 2 [J(q+q'+Q)+ J(q+q' Q)]]s
(7)

are twist-dependent pairing potentials. (The subscript S
denotes symmetrization with respect to q and q'. ) In
particular, the twist may be energetically selected so as
to maximize the attractive pairing interactions between
the spin quanta. The last term in (6) is the constraint;
physically, it is the local Onsager correction to the Weiss
field caused by strong spin Auctuations. ' " A mean-
field decoupling of this Hamiltonian then yields

HMP =g [(hq —X) [bq b tq1b+q1b q1]
q

—[~qbqtb ql +H.c.]],
where the mean-field parameters are self-consistently
determined through the equations

+, 1

A q =,cFqq'aq'& ~q J,cFqq'Qq' & S 2
= aqJ q' dq

with fq
=fd q/(2'�) and

(2,2ri ) = ((D '), (B"") )

= [coth( —,
'

Pcoq)/coq] (hq, Aq) . (10)

The twist vector is determined by minimizing the total
energy with respect to Q. The spectrum of the cor-
responding Bogoliubov quasiparticles a q

=u qb q—vqb q is then coq =(hq —X) —Aq', in the untwisted
reference frame, they annihilate a twisted resonating-
valence-bond (RVB) ground-state wave function

~'=S'[[@+—J(Q)]' —[a -]'] (12)

There are two types of transverse Goldstone modes at
q =0 and q = ~ Q, respectively, corresponding to rota-
tions of the local magnetization about the twist axis and
about an axis perpendicular to the twist and local mag-
netization. At finite S, the twist of the spins develops a
Auctuation component (6S(x ) && 8S(x')) = F(x —x') k,
where

F(x) = —,
' sin[Q x] [u+v +v+u —] e'J q

( ~ —=q ~ Q/2) .

Similar results are obtained in spin-wave theory. Fluc-
tuations of the twist director and magnetization away
from orthogonality are suppressed and are found to give
rise to a pairing gap Ag —JS at +'Q in the mean-field
spectrum, indicating the formation of spin-wave triplet
bound pairs of size —c/Ag. Slow rotations of the twist
director about the local magnetization axes now give rise
to an additional "longitudinal" Goldstone mode, which
appears in this approach as a collective mode of the
twisted spin condensate.

For small S (S„where S,+ &
=fqhq/2coq, spin Auc-

tuations become too large to sustain an ordered moment;
the spin quanta no longer individually condense. A gap
Ao —c/go develops in the spin-wave spectrum, where go is
the finite spin-correlation length and c is a typical spin-
wave velocity. In this phase, the long-range twist is sus-
tained by the correlated spin Auctuations of the normal
Auid. Equation (11) then describes a p-type spin nemat-
ic; in the absence of a local moment the twist operator
7 i (A') =S(A'+ I /2) x S(A —Y/2) displays long-range

l~)=P2sgexP Z(»q/uq)bq1b q1 l0),
, q

where P2q is the Gutzwiller projector and g =exp[iP~ Q.R~S~] is a twist operator. For the special case of
collinear spin correlations where 2Q—:0 and (uq, vq)

(uq+Q vq+Q) it is straightforward to show that
(11)becomes a singlet RVB wave function. '

In the large-S limit the spin quanta condense at q =0
in the twisted reference frame and the mean-field theory
recovers the transverse-spin-wave dispersion of the classi-
cal helimagnet, '
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order,

(7 t.(~) 7't (O))—IF(I ) I'.
This state may be visualized as a helimagnet where
quantum fluctuations in the pitch dephase the spins,
leading to a distribution of magnetic wave vectors with
variance (dg ) =( . At length scales longer than the
spin-correlation length, the residual transverse fluctua-
tions of the uniaxial twist director are described by an
O(3) o model,

1/S

I=
2 g„d xdt[(cIV, 7)~ —(tl, 7)'] (is)

where 'T(x) is the twist director, and the twist wave ve-

locity c/ is determined by the ratio of the spin-wave
stifl'ness to the susceptibility (cI ) = y'/g.

Using our microscopic calculation, we can compute
the zero-temperature susceptibility and the "London ker-
nel" relating spin currents d"(x) = —BH/riA'(x) to the
long-wavelength twist: 8 (x) = y (x —x')AI (x). The
current response kernel y'p(x) —= [y'(x)],p can be divided
into a "diamagnetic" spin-wave stiffness JV' and a
"paramagnetic, " or fluctuation, correction y (x —x')
=(Td" (x)cF (x')) (where T denotes time ordering),

y'(x) =A'8'(x) —y'(x),
where

Ã,'P= —,
' g J(R)(RI)'[(5'(o)S~(R))

R
—a'(s(o) s(R))] (i7)

is the normal component of the stiffness. In a paramag-
net these two components cancel. In the spin nematic,
spin pairing generates anisotropy, and although the
stiffness is still zero about the twist axis, the cancellation
is incomplete for components of the stiffness about axes
perpendicular to the twist. To compute the spin current
response to an external twist we express the paramagnet-
ic spin currents in terms of the spin quasiparticles. Cal-
culating the diamagnetic stiffness and the one-loop fluc-
tuations in the spin currents, the stiffness about an axis
perpendicular to the twist is

y'=
~ Z(~k khk tikVk~k) Yx

k

where h P = —, (2h k+ hk+q+ hk —q) and

AP = —, (25k —Ak+g —Ak —g),
while the fluctuation term is

y~ = —,
' g [Vkhk+(u+v — u —v+)

Cuk++ COk-

—Vkak (u~u —v+v )]', (l9)

where u+ =uk, v+ =vk, and k —=k+ Q/2.
The frustrated J] -J2-J3 and Kagome Heisenberg

models (see Fig. 2) provide simple examples of biaxial-
uniaxial melting in two-dimensional spin structures; in

FIG. 2. Phase diagram of the critical spin as a function of
frustration in the Heisenberg model for (top) a square lattice
with 1/4 & J3/jl & 0 and (bottom) a Kagome lattice (where J2
is the bond strength within the hexagons), with the spin-
nematic and helimagnetic regions shown.

both cases we find that the twist stiffness has a fluctu-
ation-induced component which allows it to survive the
absence of an ordered moment at small S. Unlike the
magnetization, the residual twist stiffness is dependent
on the presence of local SO(3) order. On length scales
below the spin-correlation length the spin nematic
behaves like a helimagnet, and vortex configurations of
the twist director will be metastable due to the SO(3)
core. Bethe-ansatz solutions of 2D classical SO(3) o
models suggest that topological considerations are very
important when considering spin-nematic formation
from the point of view of a long-wavelength action:
Indeed, the very formation of a twist can be regarded as
a soliton condensation process reminiscent of soliton con-
densation in the 2D sine-Gordon model. This process
dramatically upsets the nature of the long-wavelength re-
normalizations;' in the absence of a twist the scaling be-
havior of a continuum 2D SO(3) o model is essentially
identical to its O(3) counterpart. ' A complete investi-
gation of the topological effects of a twist on the renor-
malization flows at long wavelengths has yet to be done.

At this point our methods do not include instanton
effects, and thus we cannot distinguish between specific
values of the spin 5 which may lead to competing non-
uniform dimer ground states. ' ' We can, however,
rule out the possibility of a direct transition from hel-
imagnetic to dimer phase because "hedgehog" instanton
configurations are specific to uniaxial order parameters.
A numerical study of the extended Liang-Doucot-
Anderson wave function may serve to resolve this contro-
versial question. '

Several experimental features of a helimagnet will be
retained by a spin nematic even in the absence of elastic
Bragg peaks. As in cholesterics and helimagnets, p-type
spin nematics will be optically active. The magnetic or-
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der in a spin nematic decays on a slow time scale
t —g/c„where c, is the spin-wave velocity. Therefore,
given single-spin-nematic domains of size L, where
L«g(c/c, ) —10 g, electromagnetic radiation will per-
ceive a spin nematic as a disordered helimagnet with a
distribution of pitch lengths. The magnetic susceptibility
in a helimagnet contains a nonuniform rotating com-
ponent of the form 6g ~(R) —g, S'(R)SP(R), and, as in

cholesterics, this generates an optically active permittivi-
ty tensor. Following de Vries, ' we conclude that a p-
type spin nematic will exhibit a frequency-dependent cir-
cular dichroism with optical rotation p of approximate
size

2
l. I ky(k)-„dQp(Q) ' . . . , (20)

pop Q' Q' —k'

where p(Q) —g/tr[(Q —Qo) g + ll. As in a cholesteric,
a plane-polarized beam reflected oA' a spin nematic will

acquire a circularly polarized component with the same
handedness as the nematic. ' For optical frequencies,
the dichroism scales as —co, whereas at x-ray frequen-
cies, as in helimagnets, a marked circular polarization
will develop. Finally, we note that, as in a ferromag-
net, low-angle neutron scattering can detect poles in the
susceptibility associated with the Goldstone mode of the
twist. Gradients in the twist correspond to a spin cur-
rent; from spin conservation the autocorrelation function
of the divergence of the spin current and the spin preces-
sion S(q) are equal, so that at long wavelengths 2, (q)—(q /cu )g&. Since the twist is not a conserved quanti-
ty, the imaginary part of the twist susceptibility will con-
tain poles of the form g"(q, co) —(I/ntq)6(co —cq) which
will appear in the low-angle neutron scattering, multi-
plied by the form factor q .

We would like to mention some possible realizations of
this phenomenon. In two dimensions Ramirez and co-
workers ' have recently studied a chromium Kagome
lattice in the magnetoplumbite compound SrCrq —-
Ga4+, 0 i 9, they find no ordered moment but a broad
neutron peak at the hexagonal wave vector. At low tem-
peratures, the specific heat has a purely T dependence
that is robust against disorder; ' this reflects the linear
density of states expected in a 2D spin nematic. A relat-
ed 2D realization is the nuclear magnetism of He films
adsorbed on graphite which may also form a Kagome
lattice. Though our discussion has focused on 2D com-
pounds, it would be interesting to reexamine the phase
diagrams of classic rare-earth spin helimagnets. Finally,
there is the question of whether spin-nematic behavior
can occur in conductors as an intermediate state between
paramagnetic metallic behavior and insulting antifer-
romagnetism.
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