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We consider a spherical system composed of N concentric fluid shells having perturbations of ampli-
tude rt, at interface i, i =1,2, . . . , N —1. For arbitrary implosion-explosion histories R;(t), we present
the set of N —

1 second-order differential equations describing the time evolution of the g, which are cou-
pled to the two adjacent g, + l. We report analytical solutions for the N=2 and N 3 cases. We also
present a model to describe the evolution of a turbulent mixing layer in spherical geometry when the in-

terface between two fluids undergoes a constant acceleration or a shock.

dBl+ i=R,".

dt

dB;—p; +(n —n —1),
dt

PACS numbers: 47.10.+g, 47.20.Bp, 47.25.Jn, 52.35.py

Several years ago Plesset published his analysis of the
linear stability problem for a two-fluid spherical system.
In this Letter we extend his analysis to the N-fluid sys-
tem much the way we have done earlier in plane geom-
etry. 2 We also present a model for turbulent mix in

spherical geometry. The issues of stability and mix in

spherical geometry are important for inertial-confine-
ment-fusion capsules and for astrophysical applications
such as supernova explosions.

We believe that a recent treatment of the N-fluid

spherical problem is in error for two major reasons:
First, the assumption of a constant acceleration g and
the assumption of an exponentially growing perturbation

g are incompatible in spherical geometry —one or the
other can be chosen, but not both. Second, the assump-
tion made in Ref. 5 that all the interfaces in the N-fluid

system have a constant acceleration violates mass conser-
vation.

In Fig. 1 we show the system and some of our nota-
tion. The last fluid of density p~ is assumed to have

R~ =ee. The radii R; have a perturbation of small am-

plitude rl; so that the interface between two fluids of den-

sity p; and p;+1 is at r;=R;+ri; Y„(8,&p). Given the
(arbitrary) bulk radial histories R; (t), we find the evolu-
tion of the perturbation amplitude ri;(t, n, m), i =1,2,
. . . ,N —1.

Evolution equation The extensi. o—n of Plesset's two-
fluid analysis to the N-fluid system is tedious but
straightforward, and we present only our final results
(details will appear elsewhere ). As in the planar case,
we find that the evolution of g; depends on the two adja-
cent ri; ~ &. In this way all interfaces are coupled to each
other.

We make the following physical assumptions: lineari-

ty (nri;«R;), incompressibility, no surface tension, no

viscosity, and no heat transfer. Using continuity of the
pressure at the perturbed interface R;+g;Y„,we find

the evolution equation for the amplitude g;:

(p;+, —p;) (R R, q, )

where

In Eq. (1) the notation + (n —n —1) means adding
to the first term on the right-hand side of that equation
an identical term in which n is replaced by —n —1. This
replacement must be done in 8„8;+~, and, of course, in

the factor R,"+ appearing explicitly in that term. In Eq.
(2) the notation +(i i —1) means adding to the first
term on the right-hand side of that equation an identical
term in which i and i —1 are interchanged. For exam-
ple, the ratio R; 1/R; in the denominator becomes
R;/R;-1 and the remaining R; and rl; become R;-~ and

gi —
I ~

In deriving the above equations we have used mass
conservation via R; R; R;—~R; ~

because (shell mass)
—(shell volume)-R; —R;—

~
=const. It is clear that if

R; is constant then R;-1 (or any other R, ) cannot be

FIG. 1. N-fluid system in spherical geometry considered in

this paper. The successive densities are pi, p2, . . . , p/v —I,p/v,

and the radii are Ri, R2, . . . , Rjv —I,~. R, is the average radius
of the interface between the two fluids of densities p; and p;+1,
and has a perturbation of amplitude g, .

992 1990 The American Physical Society



VOLUME 65, NUMBER 8 PHYSICAL REVIEW LETTERS 20 AUGUST 1990

constant. By assuming a constant acceleration at each
interface the authors of Ref. 5 violate mass conservation
in each shell. This is a strictly spherical effect.

Special care must be exercised in the first and last re-

gions which cover 0«r «R] and R~ —
~
«r~ ~, where

the velocity potential is proportional to r" and r " ', re-

spectively (it is a linear combination of the two in the in-

termediate shells). Denoting the (n —n —1) terms in

Eq. (1) by C;, the conditions in the first and last regions
read Cj 0 and Bjv =0, respectively.

Equation (1) exhibits an interesting symmetry for
N» 3: The evolution equations are invariant under
n n —

1
—provided that pj =pjv=0. This proviso is

needed because we need to set Cj Bjv=0, and the re-

sulting two equations in the first and last regions are
symmetric under n n ——I if and only if pj =pjv =0.
We conclude that in a system with an arbitrary number
of shells bounded by a vacuum on the inside and on the
outside the evolution of perturbations is symmetric under
n —n —1. In plane geometry this translates to sym-

metry under k ~ —k, which we had not noticed earlier.
N=2. —Equation (1) reduces to Plesset's equation

which we write as

1 d 3dq R—nA(n) —g =0
R3 dt dt R

in which

(3)

(n +n+1)A —2n —
1

n+(1 —A)/2
where A is the Atwood number, A =(p2 —pj)/(p2+pj).
Note that A(n) A as n ~. This notation was
chosen with an eye towards an easy transition to the pla-
nar limit (n ~, R ~, n/R k finite).

Let us point out that for a spherical cavity p~ =0;
hence, A =1 and nA(n) reduces to n —1 in which case
Eq. (3) gives the well-known result for the stability of a
spherical cavity (the results of Ref. 5 do not reproduce
this case).

We have found several analytic solutions to Eq. (3)
which we classify as class 1 or class B. Class-A solu-
tions are valid for arbitrary R(t) histories but only
specific choices of nA(n). We have found solutions for
nA(n) —2 and nA(n) =0. We label the modes satis-
fying nA(n) =0 as ngpjjjqaj,

[2 A + (4 3A 2 ) j / 2]/ 2A (5)

because if rjo=0 then rt(t, n, „;&,„j,m) =rto for all t & 0;
i.e., critical modes do not evolve with time for any
implosion-explosion history R(t) This follow. s from Eq.
(3) which implies that if nA(n) vanishes then R rj

is conserved. For example, n„;I,„~= 1 if 8 = 1 and

n„;&,„~=10if A =
37 Note that n =1 corresponds only

to a shift of origin for the implosion or explosion.
In contrast, class-B solutions are valid for arbitrary

nA (n) but specific R (t ) histories. We have found ana-
lytic solutions for four cases: (i) R =Roe't, (ii) R =Ro
x(1+t/T)'t, (iii) R=Ro+ —,

' gt, and (iv) R=tj vb(t).

R,
Ro

—,
'

nA (n ) (vf/v; —1) —
1

(vf/v; —1)[1+ —,
' nA (n)]

Here we discuss only the last two cases which we refer to
as a constant acceleration (Rayleigh-Taylor instability )
and a shock (Richtmyer-Meshkov instability ).

In plane geometry a constant g leads to perturbations
growing exponentially in time. The same is not true
here. When R Ro+ 2 gt, Eq. (3) reduces to the hy-

pergeometric equation

x(1 —x) " +6(-,' —x) +2nA(n)rt =0, (6)
dx

where x =(t+a)/2a, a = —2RO/g. The solution to this
equation is ri =F(a+,a —;3;x)in the notation of Ref. 10,
where

a~ = —,
' [5+'v25+8nA(n)] .

As we mentioned earlier, a constant acceleration does
not lead to an exponentially growing perturbation in

spherical geometry. In fact, to get an exponentially
growing perturbation (ri-er ) the radial history itself
must be exponential [R =Roe't, case (i); see Ref. 6].

In plane geometry a shock followed by a constant ve-

locity leads to perturbations growing linearly in time.
The same is not true here. Assuming that jo =Ro =0
(these are preshock values) and that postshock R =Ro/
T, we find

rt(t) go[i+ —,
' nA(n) [1 —(Ro/R) ]] (8)

(the general case is given in Ref. 6). Since 1
—(Ro/R)

=t(t+2T)(t+T), ri(t) grows linearly in time only
during t«~T~. In deriving Eq. (8) we have adopted
Richtmyer's technique of treating a shock as an instan-
taneous acceleration of incompressible fluids.

In general, we expect an incompressible treatment
such as ours to be valid as long as the sound speed c, of
the fluids is much larger than the velocity of the pertur-
bations, i.e., c, »RR/n (in plane geometry c, »g/k).
Shocks require a careful treatment. Richtmyer de-
scribed how the amplitudes and the densities must be
modified to obtain agreement with his numerical calcula-
tions on fully compressible fluids in plane geometry. Un-
til new numerical calculations are carried out in spheri-
cal geometry we suggest following Richtmyer's prescrip-
tion, i.e., using postshock amplitudes and densities.

Equation (8) predicts that the perturbation will

change phase if nA(n) is positive and the radius is im-

ploding, or if nA (n) is negative and the radius is explod-
ing. For example, if nA(n) =50 then ri will go through
zero when R/Ro =425/26 = 98%. Clearly, the time
when a perturbation goes through zero is independent of
its initial amplitude go.

It is possible to freeze an amplitude, i.e., set
rj(postshock) =0, if a second shock arrives at the right
time or, equivalently, at the right radius R, . Denoting
the preshock and postshock radial velocities by v; and vf,
respectively, freeze-out occurs if
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d R9
dR

d' Ra =R 3 —(n +2)(n —1)~
AR hR R

(ioa)

(1ob)

Note that there is again no dependence on the initial am-

plitude go. The same phenomenon occurs in plane
geometry if we assume, as we have done here, that the
initial conditions are set by a first shock (see Refs. 2 and
6 for general conditions on freeze-out).

N=3.—The evolution equations given in Eq. (1) form
a system of N —

1 coupled linear differential equations
which in general must be solved numerically. Even for
N =3 the two resulting equations are quite complicated,
and we could find no analytic solutions except for the
case pi =pi =0 and in the limit of a thin shell hR/R « 1,
where dR=R2 —Ri and R=(R2+Ri)/2. Defining Ag
=q2 —

qi and rl=(ri2+ ili)/2, we find

our numerical examples with N=3. We should add,
however, that the beneficial effect of a shell that thickens
up during implosion is more than offset by the rapid
growth of the perturbation unless, of course, nonlinear
effects intervene to slow down the growth.

Turbulent mix. —Naturally occurring surface finishes
involve multimode perturbations with more or less ran-
dom amplitudes and phases. As they grow large and
enter the nonlinear regime such random perturbations
can be described as forming a mixing layer of width h.
Here we propose a model to describe the time evolution
of h at the interface of two fluids (N=2). The emphasis
is on spherical geometry, as experiments and models of
turbulent mix in plane geometry already exist. "'

The model we propose is based on Eq. (3). We as-
sume that h obeys a similar equation after taking the
limit n ~, ri 0, with nil/R =c=(a dimensionless
constant), i.e. ,

A fair amount of algebra was needed to obtain the above
two equations from Eq. (1). As expected they are in-

variant under n —n —1. These coupled second-order
differential equations can be solved analytically if the
inotion starts with a shock followed by a constant radial
velocity, i.e., R = hvb (t ) = (Rp/T) b(t ) We find.

rI(r ) = rip arip(R p/a—R p) r/T, (i la)

ail(r) = ago 1+ — —(n+2)(n —1)rip
3l' Ro t

T Rp T
3

x 1+—
T

If the initial perturbations rli(0) and r12(0) are equal,
then their sum does not evolve with time [Eq. (11a) with
hgp=0]. Their difference hg, however, evolves with
time no matter what the initial conditions read. A
second shock may arrive later and, if properly timed, can
freeze out q ~ or qq, but not both.

Numerical examples for N=2 and N =3 are given in

Ref. 6. We find that convergence enhances the growth
of the perturbations, while divergence curtails it: In an
implosion (explosion) perturbations grow faster (slower)
than the exponential growth in plane geometry. In an
implosion typical of inertial-confinement-fusion capsules
with a convergence ratio Rp/Rs„, i =25 and a density ra-
tio p2/pi =10, we found n =50 perturbations [nA(n)
= 40] growing extremely large during the final de-
celerating stage of the implosion.

Another important difference between planar and
spherical geometries is the following: In planar geom-
etry the efl'ectiveness of feedthrough or interface cou-
pling remains constant because the shell thickness
remains constant; in spherical geometry, on the other
hand, the shell thickens up (thins out) during an implo-
sion (explosion); hence feedthrough becomes less (more)
effective during the later stages. This is clearly seen in

1 d 3dhR' —cAR=0.R' dt dt
(i2)

cA t2 Ro Ro
h = 5+16 +8

70 R R

2

6
1

R
R/Rp —1 Rp

(i3)

and for the case of a shock followed by a constant veloci-

ty,

b =
2 eAhvr [Rp/R+ (Rp/R) ] . (i4)

If we take the planar limits of the above three equa-
tions, we get

d h —cAg =0,
dt 2

h=
2 cAgt

h =cAAt. t .

(is)

Note that the model [Eq. (12)] proposed here is very
tightly constrained because it predicts h for constant ac-

The physical significance of the model is that a turbulent
mix in spherical geometry is driven by perturbations of
wavelength much shorter than the radius and having cor-
respondingly smaller amplitudes in such a way that the
ratio between wavelength and amplitude remains con-
stant. Strictly speaking, we only require that A(n)
and nil/R~ c with no additional constraints on n or ri.
In plane geometry the model reduces to king =2irrl/k =c,
again with no constraints on k or rl separately.

The solution h(t) to Eq. (12) can be written down ex-
plicitly for arbitrary radial histories R(t) and initial
values hp and dhp/dt. For simplicity we assume here
that Ap =dip/dt 0 and write down It (t) for the case of
a constant acceleration
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celerations and shocks in spherical and planar geometries
and involves only one constant c. Read and Youngs''
have carried out experiments with constantly accelerat-
ing fluids in plane geometry and their results agree with

Eq. (16). Since they find h =0.07Agt, where h is the
mixing width into the heavier fluid, " we can "fix" our
constant by taking c=0.14. Equation (17) predicts
h =0.14Ah, vt for a shock, a form that we suggested ear-
lier. ' It remains to be verified experimentally.

The above equations predict a faster growth rate at an
interface with a large density gradient or a large density
discontinuity because as p2/pt ~, A 1. At an ac-
celerating interface, the mix is expected to grow only if g
is directed from the lower to the higher density fluid, i.e.,
A & 0 in our notation. At a shocked interface, the mix is

likely to grow for shocks in either direction (A & 0 or
A &0), an expectation based on our analysis of the
linear regime [Eq. (18)] as well as extrapolations from
planar experiments.

Equations (12)-(17) suggest that the turbulence is

largely independent of initial conditions and therefore
the evolution of the mixing width h is insensitive to the
size of the assumed perturbations. An initial value of ho
can be accommodated in integrating Eq. (12) (see Ref.
6). However, memory of initial conditions is lost as the
mixing width grows in time. There is experimental evi-
dence" for this behavior in plane accelerating interfaces.
No direct experimental data are available for shocked in-
terfaces or in spherical geometry.

From Eqs. (13)-(17) we see that in our model h, ~h, „
factorizes into h~~, „„and a geometrical factor (GF)
which is a function of the dimensionless variable R/Ro
only, i.e., we can write h, ~h„=h„~,„„xGF. We find that
GF is a decreasing function of R/Ro (see Fig. 2) imply-
ing that the mixing width evolves faster during an implo-
sion (slower during an explosion) than in plane
geometry. During the late states of an explosion, i.e., as
R/Ru ~, the GF for a constant acceleration becomes
asymptotic to &, and hence lt»h« ~'4 cAgt =0.01
x Agt, while for a shock the GF decreases in such a way
that the mixing width becomes asymptotic to a constant
value, hst, h, t cARp =0.07ARp.

We emphasize that unlike the linear analysis which is
based on first principles, Eq. (12) is only a model.
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FIG. 2. Geometrical factors for a constant acceleration and
a shock. The GF's relate spherical and planar mixing widths
via hspher hp]anar x GF.
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