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Quantum Algebra as the Dynamical Symmetry of the Deformed Jaynes-Cummings Model
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The q-deformations of the quantum harmonic oscillator are used to describe the generalized Jaynes-
Cummings model (JCM) by using the q-analog of the Holstein-Primakoff' realization of su(1, 1). The
corresponding dynamical symmetry is described by a quantum algebra. The q-analogs of the Barut-
Girardello and the Perelomov coherent states are introduced and the expectation value of o3 is calculat-
ed. The periodic revivals of the generalized JCM are destroyed more for increasing deformation param-
eter q. The deformed original JCM in the rotating-wave approximation can be described by u(1~1)~,
while its relaxation extends the dynamical algebra to the osp(2~2)» quantum superalgebra.

PACS numbers: 42.50.Md, 03.65.Fd, 11.30.Na

The Jaynes-Cummings model' (JCM) idealizes the
interaction of matter with electromagnetic radiation by a
simple Hamiltonian of a two-level atom coupled to a sin-

gle bosonic mode. Despite its simplicity, the dynamics
predicted by the model has been supported in recent
Rydberg maser experiments. On the theoretical side,
the JC Hamiltonian has been generalized in quantum
optics in diff'erent directions. Some of them which con-
cern us here are the one with intensity-dependent cou-

pling, the Hamiltonian which describes a two-photon
transition, and the one which relates the JC Hamiltoni-
an with the u(1~1) and the osp(2~2) superalgebras.

On the other hand, the recent development of quan-
tum groups has motivated great interest in q-deformed
algebraic structures, in particular the q-oscillators (cf.
Ref. 7). In this framework there have already been ex-
amples to treat solvable models which permit the appli-
cation of quantum algebras.

Here we undertake an analogous task in the frame-
work of the optical JC Hamiltonian. Initially, there is

the fundamental problem of how one chooses to deform
the JC Hamiltonian. We take the JC Hamiltonian with

an intensity-dependent coupling constant. ' The field

operators of this Hamiltonian are identified as the ele-
ments of the su(1, 1) algebra in the Holstein-Primakoff
(HP) realization. By constructing the q-deformed ana-

log of the HP realization, we generalize the JC Hamil-
tonian and connect it with the quantum su(1, 1)~ alge-
bra. In physical terms this generalization permits us to
introduce an additional parameter q into the JC Hamil-
tonian with an intensity-dependent coupling. The nature
of this parameter can only be speculated upon at the
present. However, its eA'ect and range of influence can
be traced from the changes of JCM dynamics
exemplified by the time evolution of the population in-

version (o3(t))—= ('P(t)
~
a'3~% (t)).

In the interaction picture and on resonance, the JC
Hamiltonian in rotating-wave approximation (RWA) is

given by (ft =1)

H;„t X(b+cr +b (x+)

and the free part

Hp =co(b b + 2 )+ 2 cppo3(co '=top =1), (2)

where a; are the Pauli matrices. The symmetry of the
total Hamiltonian is described by the Heisenberg and
su(2) algebras. Introducing an intensity-dependent cou-
pling, one obtains

HI« =k(JNb+ct +b JNcr+), (3)

where N is the number operator for the bosonic mode.
Such an intensity-dependent coupling allows for in-

teractions of the two-level atom with the field, the
strength of which depends on the number of photons
present in the cavity during the flight time of the atom
through this cavity [cf. also the comment in the third
paragraph after Eq. (18)l.

The dynamical algebra now becomes su(1, 1)Ssu(2) if
one identifies in the HP realization t' the generators of
the su(1, 1) algebra by L+ =JNb+, L —=b JN, Lp

l=N+ 2.
The deformation of the JC Hamiltonian (3) yields

H,'.)'=~(J[N]a'~ +a V[N]~'),

where we use the notation [x] = (q' —
q ")/(q —

q '),
q is the deformation parameter, and a — are the q-
deformed bosonic oscillators which satisfy the relations

a a+ —qa+a =q, [N, a —] =+ a (s)

%e now write the q-analog of the HP realization of
the quantum su(1, 1)~ algebra as

K+ =J[N]a+, K —=a v [N], Kp=N+ —,', (6)
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with commutation relations (CR)
[K-,K+] =[2Kp], [Kp, K+ l = ~ K~ .

We rewrite the quantum version of the JC Hamiltonian
in the form

H;$ =X(Kicr +K —o+), (8)
which manifests now that the dynamical algebra is

su(1, 1)qsu(2). By expressing the quantum su(1, 1)~
generators, E~, in this representation in terms of their
nondeformed counterparts, L ~, i.e.,

EC+ Li, Jt: —= L —, Eo =La,[N+1] [N+1]
N+1

we can give the Hamiltonian in the equivalent form

H(() ~ L [N+ I] + [N+I]
L + ( )N+1 N+1

which reveals the meaning of q-deformation as the
intensity-dependent coupling with an additional parame-
ter q.

Since the Heisenberg equations of motion need not be
deformed, one has the evolution operator of this system
in the usual form, U(t) exp( —itH;~$ ), which can be

I written as'

cos(Xt JK K+)
sin(Xt JK K+)—

1 It—

U(t)-
sin(kt JK —K+)—iX+ cos(A, t /K+K-)

t
with K+K [Nl and K K+ =[N+1] .

For an initial state I+(0))=I+)Sly), where I+)
denotes the fermionic ground state and Iy) E PF, the
time evolution of the population inversion can be calcu-
lated to give

(ai(t)) = g cos(2lt[n+1])I(pin&I'. (i 2)
n 0

In deforming the JC Hamiltonian we used q-oscil-
lators without changing the free Hamiltonian, although
in Hp one could, instead of b+b =N, use the term
a+a [N] with q-bosons. In this case it would be pos-
sible to obtain analogous expressions for (ai(t)) through
more cumbersome algebraic calculations.

To probe the dynamics of the deformed LCM, we set
the initial state of the q-bosonic mode as the deformed
analogs of the Glauber (G), Barut-Girardello (BG), and
Perelomov (P) coherent states (CS). The occurrence of
the q-coherent states rather than the normal ones ap-
pears naturally since the theory is q-deformed.

Specifically, the analog of the GCS is defined as

Ia)v=NG 't expq(aa+)IO)

N 't g "
IO)

n-o [n]!
n

=NG ' 'Z (i3)
d[n]!

where the normalization factor is No =exp~lal and the
notion of q-exponential" 'has been used. The same
states can be generated using the usual exponential and a
new operator T:'

Ia)& =No ' exp(aT)IO) =No ' D(a)IO),
(i4)' 1/2

N+1 b+ N+1
[N+1] [N+1]

where the displacement operator D(a) is now a group
element.

For the BGCS we define the q-analog as

K-lz& = lz&

r, (2k)

Kolk;n) =(k+n) lk;n),

where we use the q-gamma function" and the normali-
zation factor NaG=pF((k;Izl )q.

By analogy with (13) and taking into account (6), we

define the q-analog of PCS by

l&)v Np 't2expq((K+) lo&

„r,(2k+ n)

[n)!r,(2k)

N =(I —
Igl )"

I I;n), (i6)

Seeking to define this state in terms of usual exponential,
we set

Ig&, =Np '"exp'&') 10&,

which yields for T' the form

T'=Ki(N+ I )/[N+1] =L+ .

Hence T' is identical to the usual raising operator of
su(1, 1). Thus the PCS are not deformed.

Considering the three sets of CS introduced above as
the initial states for the bosonic mode, we evaluate the
population inversion as

(cri(t))i =JVJ 'g cos(2A, t [n + 1])W&(n). , (18)
n 0
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with j=G, BG, and P and 8'G=faf "/[n]!, 8'ao=fzf "/

([n]!),and 8'p =
~(~

" for k = —,
' .

To examine the influence of deformation on the dy-
namics, we concentrate here on the first case with the q-
Glauber coherent-state preparation of the bosonic mode.
Formally, the series (18) giving ((r3(t))G is similar to the
nondeformed (q= 1) case which can be summed up to
give a closed-form solution and exhibits periodic collapse
and revivals. However, in the deformed case the pres-
ence of q-quantities excludes a closed-form expression.

In Fig. 1 we display the numerical calculation of the
population inversion for the values of q=l (solid line),
1.01 (dotted line), and 1.03 (dashed line). One can see
that in addition to the disappearance of periodicity in the
deformed case (q & 1), the more deformed the model,
the longer the departure from perfect revivals is, and, be-
sides, the more spread the revivals acquire as time in-

creases. This situation is akin to the original coherent'
JCM of Eq. (1), i.e., without an intensity-dependent cou-
pling.

Let us also remark on the case of the two-photon tran-
sition in the JCM, H;„& =X(b + a +a+b ), which uti-
lizes the L ~ —,

'
b — realization of su(1, 1) algebra.

This gives an exact solution

(03(t))(3 e ' g cos(2ktv (n+ 1)(n +2))—a 2

n 0 n!

which in the large-number-of-photons limit n =~a~ &&1
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FIG. 1. The population inversions &(r3(t)) of the generalized
Jaynes-Cummings model as a function of time for diA'erent
values of deformation parameter q [see the text after Eq. (18)].

becomes

((r3(t))(3=e !' g cos(2kt (n + 1 ))
—a 2

n 0 n

which in turn is the solution of the intensity-dependent-
coupling JCM. Similarly, the q-deformed version of the
two-photon JCM, H;„$ =X,(a+ (r +(r+a ), which
utilizes the K~ =(q+q ') 'a — realization of the
su(1, 1)v quantum algebra, permits in the large-n limit
the approximation

which is the expression for the deformed intensity-
dependent-coupling JCM we examined above in Eq. (18) peralgebra obeys the CR
with scaled X.

Deformation of JCM can also be performed following
the u(1~1)-superalgebra formulation of the model. We
show that the deformation invokes the quantum super-
algebra u(1~1)v which now describes the dynamical sym-

metry of the model. Indeed, the deformed JC Hamil-
tonian

[V+, V-]+ = [2Py], [V+.,P ]=~ V~, —

(21)

Relaxing the RWA, we add to the JC Hamiltonian (1)
the energy-nonconserving term 0' ~ =8V —+ V+ 8,t( )

where 8, 8 are additional Grassmann variables and
V+ a f are odd generators which together with
P~, V~, and K~ =(q+q ')a — form the osp(2~2)v
quantum superalgebra [in the sense of deformed univer-
sal enveloping superalgebra Uvosp(2~2); see also Ref.
14]. This is the new dynamical algebra of the system
with CR

H q =to(P +P )+a)o(P+ —P )— —

+),() v +v+)-),

with y and y as Grassmann variables, is written as an
element of the u(1~1)~ quantum algebra in the realiza-
tion V~ =a f —, P+ = —,

' (N+M), P = —, (N —M
+ 1). The q-fermions ' f— have been used, for gen-
erality, with CR

[V+,V-]+ =[2P —], [V+,P+] =+ V+,
(22)

[v+,p ] =o.

OO 2ll OO )2n
((r3(t))o=(exp~~a~ ) ' g cos(2kt J[n +1][n+2]) =(exp~~a~ ) ' g cos(2q' kt[n+ I])

n 0 n-0 [n]!

f f'+qf'f =q ~ [M.f ] =+f (2o)

while f+f =[M] =M and f f+ =[1—M] =1 —M.
In particular, in JCM the (simplest) realization f
=(r — occurs. The u(1~1)v dynamical quantum su-

In the nondeformed case the spectrum of the Hamil-
tonian is obtained by the adjoint action of the Osp(2~2)
group on the JC Hamiltonian. In the deformed case
there exists no adjoint action of the corresponding quan-
turn group due to the peculiarity of this object. ' There-
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fore, we can diagonalize the Hamiltonian only by em-

ploying the eigenvalue equations involving Grassmann
variables.

As demonstrated specifically on the generalized JCM,
q-deformation can seemingly be applied to any physical
problem. This deformation introduces, in addition to the
parameters already present in the original problem, a
new q parameter to which it is of fundamental impor-
tance to give a physical interpretation. Such a question
has been addressed in the work on, e.g. , q-oscillators. It
is also known that the fundamental constants t't and c
can be considered as deformations of classical mechanics
and of Galilean invariance. Hence the parameter q
opens a new possibility to deform a modern physical
theory. ' lf, on the same footing as the other fundamen-
tal constants of nature 6 and c, one would like to have
another dimensional constant in order to make the defor-
mation parameter q dimensionless, one is forced to intro-
duce a new fundamental constant of dimension length
(or equivalently mass).

Since q-deformed algebras have originally emerged
out of unrealistic integrable systems in one-dimensional

space or in a chain, we have tried here to q-deform a
simple model which at the same time would permit an

experimental verification in one way or another. Besides,
it is noticeable that the q-deformed version of one of the
fundamental theoretical paradigms of quantum optics,
the Jaynes-Cummings model and its generalization, al-
lows one to work out all the details of the model as is the
case in the original nondeformed version.
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