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Quantum Nondemolition Measurement of Small Photon Numbers
by Rydberg-Atom Phase-Sensitive Detection
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We describe a new quantum nondemolition method to monitor the number N of photons in a mi-
crowave cavity. We propose coupling the field to a quasiresonant beam of Rydberg atoms and measur-
ing the resulting phase shift of the atom wave function by the Ramsey separated-oscillatory-fields tech-
nique. The detection of a sequence of atoms reduces the field into a Fock state. With realistic Rydberg
atom-cavity systems, small-photon-number states down to N=O could be prepared and continuously
monitored.

PACS numbers: 42.50.BS, 07.62.+s, 42.50.Dv, 42.52.+x

Quantum harmonic oscillators can be used as ul-

trasensitive sensors for small classical forces. Hence,
procedures to monitor the evolution of these systems
with ultimate precision and minimal disturbance have
been analyzed in detail. ' "Squeezing" techniques have
been developed, which beat the standard quantum limit
in the measurement of an oscillator quadrature ampli-
tude. Quantum nondemolition (QND) methods have
also been designed to avoid the "back action" produced
by a measurement. For an electromagnetic-field mode
F, a version of QND consists in monitoring the photon
number N without changing it. This may be achieved by
coupling F to a detector via a nonresonant interaction,
excluding processes where photons are created or annihi-
lated. QND schemes in which the detector is a probe
field quadratically coupled to F in a transparent solid
medium have been proposed and demonstrated. The
detection of the probe phase yields a QND measurement
of F intensity or quadrature amplitude. In this way, one
detects relatively intense fields with large-N values, in-

ducing sensible nonlinear effects in solids. Attempts are
now being made to increase the sensitivity of the method

by replacing the solid medium with an atomic vapor
close to resonance.

We discuss here a novel approach to QND, working
down to zero photon. The probe is a beam of atoms,
laser excited into a Rydberg level f before crossing the
cavity sustaining the field F [Fig. 1(a)j. Three Rydberg
levels f, e, and i and two allowed transitions f e and
e i (with angular frequencies co,f and ro;, ) are rel-
evant in our scheme [Fig. 1(b)). The detuning 6 be-
tween the cavity mode (frequency ro) and the e i tran-
sition is large enough to preclude photon absorption.
Yet, the highly polarizable level e experiences a sensible
dynamical Stark shift in a single-photon field (note that
the level f is not appreciably shifted since co —co,f is
much larger than b). The cavity is placed between two
field zones R ~ and R2 driving the f e transition (Ram-
sey separated-oscillatory-field method ). This transition
is detected behind R2 by an atomic ionization counter
(IC) which discriminates the states e and f. The pres-
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FIG. I. (a) QND setup for measuring the photon number N
in a cavity: The atomic beam B, prepared by lasers in Rydberg
level f, crosses successively the field zone Ri, the cavity, and
the zone R2 before detection by the IC counter. The variation
of the field intensity along the beam path in the cavity is
shown. (b) Diagram of levels e, f, and i: The cavity field, de-
tuned by b from the e i transition, shifts e by an amount
proportional to N. The R~-R2 fields induce an f e transi-
tion.

ence of N photons in the cavity results in a phase shift,
proportional to N, of the e-state amplitude relative to f
which alters the probability of detecting the atom in e or
f. Monitoring the f e transfer rate thus yields a mea-
surement of N. Since the photon number in the cavity is
unchanged, the condition of "back-action evasion" for N
is satisfied. On the other hand, the complementary ob-
servable (the phase of the field) is scrambled, since each
atom modifies the index of refraction in the cavity. Ryd-
berg atoms coupled to a cavity are ideal models for
quantum-field measurements and they have already
been tested as efficient microwave photon counters. '
These systems operated, however, on resonant ¹ ltering
atom-field coupling. Our nonresonant QND method
opens new perspectives for the study of weakly excited
nonclassical field states.

The dynamical frequency shift h(r, N) induced on an
atom in level e, at point r in the cavity containing N pho-
tons, is given by a simple two-level "dressed-atom" cal-
culation

(r N) =(gl2)[[1+4+2(r)d2N/$2/2] I/2 IJ (I)

E(r) is the position-dependent rms vacuum field in the
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cavity, d the electric dipole matrix element on the up-
ward e i transition, '' and B=ni —co;, (h is Planck's
constant). As we will see, photon absorption processes
can be made negligible with appropriate field geometry
provided a "minimal" off-resonance condition E (r)
xd2N/62b' ~0. 1 is satisfied. Equation (1) can then be
linea rized:

~(r, N) =[E''(r)d'/e'S]N (2)

For an order of magnitude, consider that e and i are
circular Rydberg states' with principal quantum num-
bers 50 and 51, the cavity sustaining the TE~z~ mode at
51.1 6Hz. We then have d=10 cm, E(0) =4.35
X10 V/m at cavity center (r =0), and dE(0)/t't
-4.2&&10s rad/s. With 8=4.2&10 s ', we satisfy the
minimal off-resonance condition for N up to 10 and the
shift "per photon" d(0, 1) is 4.2X 10 rad/s. Consider
now an atom moving across the length L, =1 cm of the
cavity at velocity vp. The accumulated phase shift per
photon is e (h(r, 1 ))L,/vp, where the angular brackets
denote a spatial average along the atom path
[(h(r, l)) =6(0, 1)/2 for the TE~qi mode exhibiting a
half sine-wave variation along the cavity axis). With
vp=300 m/s (average velocity of a Rb or Cs thermal
beam), e is 0.7 rad. This phase shift is further increased
by slowing down the atomic beam. vp=35 m/s, easily
achievable by standard laser-cooling techniques, corre-
sponds to e 2n. Note also that the time of flight across
the cavity (~ 3X10 s when vp~ 30 m/s) is much
shorter than the circular Rydberg states radiative decay
time (3 x 10 s for n 50). Large single-photon shifts
are obtained by choosing a relatively small 8 detuning,
yet without producing sensible photon absorption, due to
our choice of adiabatic field-atom coupling (slow-field
turn on and off along the atom path in the cavity). Nu-
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FIG. 2. Transition probability from f to e plotted vs po for

a 2' (a) Monokin. etic atomic beam (velocity vo) and field in

an N state. (b)-(d) Transition probability averaged over the
atom velocity distribution, the cavity sustaining (b) a Fock
state, (c) a coherent, or (d) a thermal field. Mean photon
number in all cases: N=3. Arrows indicate values go=No for
N 0 and 3. In each part, the full vertical scale is from 0 to 1

and the full horizontal scale is 24m.

Wp(e, v) =QP.(N)n(e .N).
N

(4)

Note that Pp(e, v) does not depend upon off-diagonal
field density matrix elements and is field-phase insensi-
tive. Next, consider the transition rate averaged over the
2)(v) distribution. For each 1V value, the averaged prob-
ability P(e,N) =f$(v)P(e, v, N)dv, considered as a
function of po, exhibits a single sharp feature around the
velocity-independent fringe position +O=Ne, all the other
fringes being washed out [Fig. 2(b)]. The averaged
probability for a field described by Pp(N) is

Pp( ) =/Pp(1V)P(, N)
N

=QPp(N) I X)(v)e(e, v, N)dv.
JV

(5)

Figures 2(c) and 2(d) show Pp(e) vs pp for e=2n, the
field being either a coherent or a thermal one [Poisson or

merical computations with the above parameters show
that the probability of photon absorption per atom
remains smaller than 10 . An atom may temporarily
absorb a photon, but restores it in the mode before exit-
ing from the cavity. At the same time, the phase shift
keeps adding up during the whole cavity crossing time
and the atom carries away this phase as a QND "infor-
mation ' on N. The absorption probability is much
larger for a mode with a square-shaped E(r) profile,
whereas the phase shift is of the same order of magni-
tude. The slow spatial variation of the field is thus an
essential feature of our QND method.

Consider now the effect of the Ri-Ri oscillatory fields
(whose angular frequency ru„ is nearly resonant with
Cp f). The atomic beam has a thermal velocity distribu-
tion $(v) centered at v vp. Call yp=(ni, N f)L/vp
the dephasing building up between the Ramsey fields and
the unperturbed atomic dipole during the time of flight
at velocity vo over the distance L between R~ and R2.
The probabilities P(e, v, N) [P(f,v, N)] of detecting the
state e [f] an atom prepared in f and crossing with ve-

locity v the cavity containing N photons is

P(e, v, N) =1 —P(f, v, N)

sin (nvp/2v)cos [(pp —Ne)(vp/2v)] . (3)

The sine term is the f~ e transition probability in the
absence of Ramsey and Stark detunings, called the
"fringe contrast. " It is set to 1 for v =vp by adjusting
the Ramsey fields amplitude. This contrast is ni, —co,f
independent, provided the lengths of the R~ —R2 zones
are short enough. The cosine term in Eq. (3) exhibits a
well-known fringe pattern when pp is tuned [Fig. 2(a)].
The central (velocity-independent) fringe corresponds to
pp=Ne. For e 2ir, the pattern is translated by one
fringe when N increases by 1. For a field with a photon-
number distribution Pp(N), the transition probability
Pp(e, v) is a sum of translated patterns:
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exponential Pp(N) distribution with mean photon num-
ber N=3]. The shape of the fringe pattern allows us to
distinguish a coherent from a thermal or a Fock-state
field [compare Figs. 2(c), 2(d), and 2(b)]. In order to
measure Pp(e) from which Pp(N) can be deduced, we
merely have to detect a sequence of atoms for each value
of co, —ro,f and to determine the mean f e transfer
rate. The field must be in the same initial state before
each atom interacts with it. Practically, this means that
the field relaxes back to equilibrium between consecutive
atoms, with negligible damping, however, during the
time I.,/v p ("moderate Q" cavity fed by a stationary mi-
crowave source).

We now analyze another experiment where the field is
not sensibly relaxing between atoms (very high Q cavi-
ty). Repeated measurements are performed on the field
initially described by Pp(N). Quantum mechanics pre-
scribes that each atom measured in e or f "reduces" the
field density operator, Pp(N) becoming P~(N) after the
first atom, P„(N)after the nth one. The process being
field phase independent, P„(N) is given by a simple
probability argument. Consider an experiment in an
ideal (infinite Q) cavity, in which both the atomic state
and velocity v are measured (the IC counter yielding
time-resolved signals allows us to perform also a time-
of-flight measurement). Let us call {ai„vk]a set of mea-
surements on a sequence of n atoms (1 ~ k ~ n, ak
stands for e or f). The joint probability Jf(N;{al„vt,j)
for the field to contain N photons and for the {ak,vt, j se-
quence to be realized is

R(N;{ak,vkj) Pp(N)Q[$(vk)P(ak, vk, N)] . (6)
k

Suppose now that the sequence {ak,vk ] has been mea-
sured without other information on the field. The condi
tional probability of having N photons then is

R(N;{ak, vt, j)
Pn N

Ztv'[+(N'; {a/(, vk j )]

Pp(N)IIk [P(ak, vt„N)]
7

ZN'Pp(N')IIk [p(ak vk N') l

Equation (7) shows that measuring the kth atom in
level e [or f] with velocity vk results in multiplying
Pk )(N) by P(e, vt„-N) [or P(f, vk, N)], with a proper
normalization. This leads to a simple recipe to simulate
this continuous measurement of the field: First, draw a
randoin velocity v~ and compute Pp(e, v&) from Eq. (4);
then, decide the outcome of the first e/f measurement
by comparing Pp(e, v~) to a random number between 0
and l. If the outcome is e [f], multiply Pp(N) by
P(e, v&, N) [P(f,v&, N)] and normalize by dividing by
Pp(e, v

~ ) [Pp(f, v
~ )]. This gives P

~
(N). Draw then a

velocity v2, compute P~(e, v2) =Q~P~(N)P(e, v2, N) to
be compared to a second random number, and so on. In
this way, we get P2(N) . P„(N).

%e have carried out simulations of such continuous-
field measurements for various yo and e values. The ini-
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FIG. 3. Evolution of photon-number distribution P, (N) in a
simulation of the {a&,vq] measuring sequence. (a) Initial dis-
tribution (n-0, coherent field with N 10); (b)-(d) P„(N)
after n 3, 5, and 20 detected atoms, respectively (e z,
pp 0.15m). Note the diff'erent vertical axis scale in each part.
The full horizontal scale in each part is from N 0 to 30. Col-
lapse into the N 13 Fock state is clearly observable.

tial field is either coherent or thermal, with N ranging
from zero to a few tens. Quite generally, P„(N)is found
to converge towards a distribution representing a Fock
state somewhere within the width of the initial Pp(N)
distribution. Figure 3 shows P„(N)after 3, 5, and 20
atoms in a typical simulation with pp=0. 15m, e=n (ini-
tial coherent field with N=10). The collapse into a
Fock state (here N 13) requires in this case the detec-
tion of =20 atoms, which we call an "elementary
measuring sequence. " Another simulation will converge
similarly towards another Fock state: The sequence of
detected atoms measures the field and hence reduces it to
an a priori unpredictable energy eigenstate. As expected
for a QND method, the histogram of N values obtained
by repeating this simulation reproduces the initial
Pp(N). Note that each atom does not provide a com-
plete measurement of N, which is "pinned down" to a
precise value only by gathering enough information
through repeated atom detections: Each one results in

multiplying P„(N)by a function of N presenting peaks
and minima, thus decimating efficiently some photon
numbers in the distribution, until only one is left. From
then on N cannot change any longer. During a measure-
ment, P„(N) is at each step entirely determined by the
{ak,vkj sequence and is independent of the order in
which these values are obtained. It should be possible, in

an actual experiment, to compute atom by atom the evo-
lution of the field-density operator from the observed
{ak,vkj and to witness "in real time" the collapse into a
Fock state. Note also that an undetected atom does not
change P„(N). This is not true for resonant photon-
counting processes ' in which even "unread" atoms
emit or absorb photons in the field.

We have also simulated the effect of a repeated QND
process on a weakly relaxing field coupled to an external
(thermal or coherent) source. The relaxation is neglect-
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FIG. 4. Photon-number evolution in a simulation of a con-
tinuously monitored thermal field coupled into a slowly relax-

ing cavity (N-3, po 0.15m, e z). The "measured" photon
number (vertical axis) is plotted against the number of atoms
crossing the cavity. The total time scale corresponds to the
passage of 5000 atoms and the relaxation time to 2500. Quan-
tum jumps of the field are exhibited.

ed during the time each atom is in the cavity and per-
turbs the field only when the cavity is empty between
atoms. " Figure 4 shows a typical evolution of the con-
tinuously measured photon number on a thermal field
with N 3. The cavity has a relaxation time correspond-
ing to the passage of 2500 atoms, i.e., about 100 elemen-
tary measuring sequences. The field randomly varies
among the possible states, spending in each an average
time proportional to its stationary probability. Quantum
jumps' are occurring over the time scale of a measuring
sequence. The "noise" corresponds to processes in which
field evolution is counteracted by quantum "collapses. "
Reading the {ak,vt, ] sequence provides again a way of
telling in which state the field is at a given time. It
should be experimentally possible to know when the cavi-

ty is empty, achieving in this way, during well deter-
mined periods, effective zero-degree field temperature.

We have presented here a QND method to monitor at
the microscopic level the evolution of a weakly excited
microwave field. Single-photon jumps and the quantum
Zeno effect' on a field oscillator could be observed in

this way. The possibility of applying this method to
detect minute forces coupled to the cavity walls is also
worth considering. '
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