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Cluster Dynamics for Fully Frustrated Systems
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We present a novel cluster algorithm for Monte Carlo simulations of the fully frustrated Ising model

on the square lattice. The new method does not suffer from problems of metastability, and is extremely
e%cient even at T 0. Our algorithm is a special case of a more general Monte Carlo simulation
scheme. The general scheme unifies many cluster algorithms that were developed recently in order to
accelerate Monte Carlo simulations.
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The work of Swendsen and Wang' (SW) on accelera-
tion of simulations of ferromagnetic Potts models opened
a new field of interest in computational physics. The im-

proved efficiency of their cluster algorithm gave hope
that similar methods may be used to accelerate simula-
tions of other systems, for which standard techniques are
very inefficient. Indeed, generalizations appeared
soon after the work of SW was published.

Clearly, one needs different cluster algorithms to ac-
celerate simulations of different models and physical sys-
tems. A most important unsolved problem is that of
simulating models with competing interactions and frus-
tration. All known algorithms ' become inefficient
when competing interactions are introduced. They fail
to identify the "correct" clusters, and in most cases al-
most all of the lattice ends up in the same cluster, lead-

ing to a trivial move. Thus, it is still very difficult, if not
impossible, to perform simulations of spin glasses at low

temperatures. Many optimization problems (e.g. , the
wiring problem in computer design, the problem of
finding the location of atoms in the unit cell of a crystal
from x-ray scattering information, ' etc.) fall into this
class of models with frustration. Simulated annealing,
which is the most efficient method for such problems,
also suffers from severe slowing down. The "replica"
Monte Carlo algorithm" of SW improves simulations of
the two-dimensional Ising spin glass, but is not as effec-
tive in other cases. For example, it is much less efficient
than the algorithm we present here for the fully frustrat-

ed Ising model on the square lattice.
This Letter makes a first step towards solving some of

the problems in the simulation of frustrated systems.
We propose a novel cluster algorithm for simulating the
fully frustrated Ising model on the square lattice. We
show that it is extremely efficient even at T=O, and does
not have metastable states; hence we move between
ground states of the model without simulated annealing.

The paper is organized as follows: First, we describe
the algorithm in detail, and compare its performance at
T=O to that of Metropolis et al. '2 We find that while

typical time scales of the Metropolis algorithm diverge
very strongly as a function of system size, our algorithin
does not suffer from significant slowing down. Conse-
quently, we can easily measure the dependence of the
magnetic susceptibility on system size, and confirm that
at T=0 the system behaves as a ferromagnet at criticali-
ty. As we increase L, the linear size of the system, the
susceptibility g diverges as X-L ", where ri= —,', in

agreement with exact results. ' We also give an intuitive
explanation for the extraordinary performance of the al-
gorithm. Last, we demonstrate that our new method is a
special case of a more general cluster Monte Carlo tech-
nique. The general scheme includes as special cases oth-
er previously developed cluster algorithms. ' We
show that this general method satisfies the detailed bal-
ance condition, and conclude that our algorithm is a legi-
timate Monte Carlo procedure.

Description of the model and the algorithm We.—
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consider the fully frustrated Ising model on the square
lattice with nearest-neighbor interactions and periodic
boundary conditions in both directions. All horizontal
bonds are ferromagnetic, while vertical bonds are fer-
romagnetic on even columns and antiferromagnetic on
odd columns. All bonds have the same absolute strength
J. The algorithm works equally well for any other ar-
rangement of bonds such that all elementary plaquettes
are frustrated (i.e., at most three of the bonds can be
satisfied simultaneously). The ground state of this model
is highly degenerate and its entropy at T=0 is finite. '

Single-spin-flip Metropolis simulations of this system
get stuck in metastable regions of configuration space
and cannot sample all ground states. Even cluster algo-
rithms such as the SW, ' multigrid, or Wolff ' methods
for Potts models do not improve the situation. We claim
that the failure of these techniques is due to the fact that
they treat single bonds independently. While in systems
without frustration the sign of a single bond determines
whether the two spins that it connects tend to be aligned
or antialigned, this is not so when competing interactions
are present. For example, in the model we consider here,
one has to take into account at least four bonds that
form an elementary plaquette in order to see that the rel-
ative orientation of two neighboring spins is not well
defined in the ground state. Thus, we propose to take
into account correlations within elementary plaquettes
rather than treating single bonds independently.

We now describe how our algorithm generates a tran-
sition from any given spin configurations u to u'. First,
we partition the plaquettes into a checkerboard pattern,
and randomly choose either the shaded or unshaded set
(Fig. 1). Say we choose the shaded ones: Each bond be-
longs to one and only one shaded plaquette. The energy

FIG. l. A possible outcome of the clustering procedure.
Here, we started from one of the ground states of a 4X 4 lattice
(with periodic boundary conditions), and applied the freeze-
delete rules at T=O. Plaquettes that belong to the checker-
board partition that was chosen are shaded. Frozen bonds are
denoted by double lines and deleted bonds are not marked.
The system is divided into two clusters. Spins that belong to
the first (second) cluster are marked by circles (squares).
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E~ of a plaquette p is either E~ = —2J (when three of
the four bonds are satisfied and one is not), or E~ =2J
(when three of the bonds are unsatisfied). Next, we

make an independent decision on each of the shaded pla-
quettes. The decisions depend on the spin configuration
u through the plaquettes' energies. If F~=2J, all four
bonds of the plaquette p are deleted, i.e., replaced by
bonds of strength J =0. If E~ = —2J, we decide on one
of three alternatives in a probabilistic manner. We
delete all four bonds with probability P

~

=e ~ . With
probability Pi=(1 —e ~ ) we delete the unsatisfied
bond and the satisfied bond parallel to it, while the other
two bonds are frozen, i.e., replaced by bonds of strength

~
J

~

=~ (keeping the sign of the bonds fixed). Last, with

probability 1 —P~ —P2 we randomly choose one of the
two satisfied bonds which are perpendicular to the
unsatisfied bond. This bond and the unsatisfied bond are
deleted while the other two are frozen. A possible out-
come of our procedure is shown in Fig. l. In this exam-
ple we started from a ground state of the system, and ap-
plied the rules described above at T 0. Frozen bonds
are marked by double lines, while bonds that were delet-
ed are not marked.

As a result of this procedure the spins are divided into
clusters; two spins belong to the same cluster if there is a
line of frozen bonds connecting them. In the example of
Fig. 1 the lattice is divided into two clusters. Spins that
belong to the first (second) cluster are marked by circles
(squares). Our last step to generate a new spin con-
figuration u' is to flip each cluster with probability —, , as
done in the SW method. ' This completes one clustering
move of the algorithm, and in order to continue the
simulation we restore the original Hamiltonian and re-
peat the steps described above, starting from the new

spin configuration we have generated.
As described here, our procedure is not ergodic at

T 0. In order to ensure ergodicity we supplement it by
single-spin-flip Metropolis sweeps. The number of
Metropolis sweeps after each clustering move is a tun-
able parameter of the algorithm. We have not yet tested
the significance of this parameter, but we believe it can
only change typical time scales by a factor, which does
not depend on lattice size or temperature. In the simula-
tions that we describe below, each cycle consisted of one
clustering move followed by a single Metropolis sweep.

Results and comparisons. —In order to test the
efficiency of the new cluster algorithm we performed
simulations of systems of linear sizes I. =4, 8, 16, 32, 64,
and 128 at low temperatures. Here, we compare results
of Metropolis simulations with those obtained from
simulations with our cluster algorithm. Time is mea-
sured in units of sweeps through the lattice. Since each
sweep of the cluster algorithm consists of one freeze-
delete cycle followed by a single Metropolis sweep, it is

clear that a s~eep of the cluster algorithm is more ex-
pensive than a Metropolis sweep in terms of computer
time. However, this diff'erence is not significant since
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FIG. 2. Log-log plots of time-delayed autocorrelation func-
tions of the square of the magnetization (see text for defini-
tion) as a function of time, measured in Monte Carlo sweeps
(MCS). Metropolis and cluster simulations of a 64 x 64 lattice
are compared.

Metropolis sweeps are faster by a factor of less than 2.
As a first test we measured the magnetization per spin

as a function of time for a 32x 32 system at various tern-

peratures (P =0.5, 1.0, 2.0, 3.0), and compared between

Metropolis and cluster runs of 1000 sweeps each. From
the time scales associated with fluctuations of the mag-
netization we could see that the Metropolis simulations
suffer from severe slowing down. In fact, for P ) 1.0 the
system was trapped in metastable regions of configura-
tion space and did not equilibrate at all. The cluster
simulations, on the other hand, were not affected by the
decrease in temperature. The results indicated that even

at P=3.0 typical time scales of the new algorithm are
much smaller than 10 s~eeps. Thus, our method is

unique in the sense that it does not suffer from the prob-
lem of metastable states.

Now we turn to more accurate measurements of auto-
correlation times. We simulated lattices of different
sizes at very low temperatures (P=10) and measured
the time-delayed autocorrelation function' of the square
of the magnetization:

(M (ro)M (to+a)) —(M )
(r) =

(M4) —(M')'
where M is the magnetization of the system. From the
exponential decay of C(t) at long times we can deduce
the exponential autocorrelation time r. For each system
size we performed 25000 sweeps with each algorithm
and discarded the first 5000. From the remaining 20000
we calculated the autocorrelation function C(t), and the
results for L 64 are plotted in Fig. 2. Autocorrelation
times of the Metropolis algorithm are so large that for
lattices with L ~ 32 we see only transients; our Metropo-
lis simulations are not extensive enough to measure the
asymptotic decay of C(r) at long times. The cluster al-

gorithm, on the other hand, is extremely efficient. Its au-

tocorrelation times barely depend on system size, and are
very small (of the order of 2 or 3 sweeps). Within our
precision we can hardly see any slowing down as we in-

crease the size of the lattice. Results of more extensive

simulations, with more precise statements concerning au-
tocorrelation times and slowing down in both algorithms,
will be published elsewhere. '

Because of the extraordinary efticiency of our method
we can easily perform measurements of the magnetic
susceptibility per spin g=(M )/L . At T=O we find'

g-L ", with g =0.507 ~0.009. Hence our model has
a (ferromagnetic) critical point at T=O. By measuring
the fourth-order cumulant of the magnetization we also
verified that hyperscaling is obeyed. These results are
consistent with exact results of Forgacs. '

Why does it work? —Simulation methods, such as
single-spin-flip Metropolis and straightforward applica-
tion of standard cluster algorithms, " all fail to equili-
brate the fully frustrated Ising model at low tempera-
tures. The Metropolis algorithm fails because many
spins are frozen in the typical ground state (i.e., cannot
be flipped). Moreover, to ensure that the system will not

get trapped in metastable regions of configuration space,
one has to allow for large-scale moves. Standard cluster
algorithms, on the other hand, freeze nearly the entire
lattice into one cluster, and generate only trivial large-
scale moves. Therefore, it is clear that in order to devise
an efficient simulation method for this model we must
look for an algorithm that does not freeze the whole lat-
tice into a single cluster, even when the system is in a
ground state at T 0. Indeed we can show that our pro-
cedure does not suffer from this deficiency. In particu-
lar, we proved that when the system is in a ground state
at T=O, our algorithm divides the lattice into several
clusters. Moreover, there are at least two large clusters,
each consisting of at least L spins, where L is the linear
size of the system. We give a detailed proof of these
statements in Ref. 17.

The reason that our method succeeds where other
techniques fail can be traced to the fact that standard
cluster algorithms "work" on bonds. In all ground states
of our model every plaquette contains three satisfied
bonds while the fourth bond is unsatisfied. When stan-
dard clustering methods are applied, even though the
unsatisfied bond is always deleted, the two spins that it
connects do end up in the same cluster at T=0. This is

due to the fact that the three satisfied bonds are frozen
(at T=O, a satisfied bond is always frozen). Thus,
unsatisfied bonds are effectively frozen, and a single clus-
ter is generated. We realized that in order to overcome
this problem we must break plaquettes, and hence cannot
use single bonds as the basic interaction (to be frozen or
deleted). Note that breaking plaquettes is a necessary
but not suScient condition to ensure that the lattice is
divided into several large clusters. Plaquettes may be-
come frozen indirectly, in the same way that unsatisfied
bonds are eAectively frozen by standard cluster algo-
rithms. We examined a number of freezing schemes that
do break plaquettes, but only for the scheme described
earlier were we able to prove that the lattice is indeed di-
vided into several large clusters. We conclude that our
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PVt'(u) =PVt(u) —In[PI(u)], (2)

our procedure satisfies the detailed balance condition
with respect to the Hamiltonian )Y.

As an example for the general procedure, consider the
algorithm for the fully frustrated Ising model that was
described above. We divided the Hamiltonian into ele-
mentary plaquettes. Next, the energy of each plaquette
was changed by a freeze-delete decision. We either de-
leted two of the four bonds and froze the other two (six
possibilities) or deleted all four bonds (one possibility),
and therefore n =7. It is straightforward to see (and will

be shown in detail in Ref. 17) that the new bonds J con-

algorithm, when acting on any ground state, performs
nontrivial large-scale moves. As demonstrated above,
our procedure, when supplemented by single-spin-flip
steps, allo~s the system to move freely between all

ground states, which is an essential property for ac-
celerating equilibration.

We turn now to show that our algorithm is a legiti-
mate Monte Carlo procedure, i.e., satisfies the detailed
balance condition. To that end we describe below a gen-
eral legitimate simulation procedure, and then show that
our algorithm for the fully frustrated Ising model is a
special case of this general scheme.

A general cluster Monte Carlo scheme. —The ques-
tion of generalizations of cluster algorithms is of impor-
tance for the future development of efficient simulation
techniques. We present a general scheme that satisfies
the detailed balance condition, and may therefore serve
as a useful tool to devise new algorithms.

Consider a model Hamiltonian P that can be written
as a sum of the form & =gtVt. For example, one can
write the nearest-neighbor Ising Hamiltonian on the
square lattice as a sum over bonds or as a sum over ele-
mentary plaquettes. The first step of our general Monte
Carlo scheme is to make independent decisions on each
of the terms Vt of the Hamiltonian. The decision may
depend on the configuration of the system u. As a result
of this decision the term Vt(u) is replaced by Vj(tt) with

probability Pt(u), where i =1, . . . , n The .n possibilities
are generalizations of the freeze-delete operations which
are used in many cluster algorithms and their probabili-
ties are normalized such that P;Pl(u) = I for any term I
and configuration u. Next, we perform a simulation of
the model using any procedure that satisfies the detailed
balance condition with respect to the new Hamiltonian
iY =Pi Vt, and generate a new configuration of the sys-
tem u'. These two steps define a cycle of the procedure,
and after completing the cycle we restore the original
Hamiltonian and repeat the procedure starting from the
new configuration u'. It is easy to show (and will be
shown explicitly elsewhere" ) that if we choose Vt'(u)
and Pf(u) such that

stitute a Hamiltonian that satisfies Eq. (2), and therefore
our algorithm is a legitimate Monte Carlo procedure.

Other previously developed cluster Monte Carlo algo-
rithms are also special cases' of the general scheme de-
scribed here. This is obviously the case for the SW algo-
rithm' and for the p and O(n) algorithms. The
Niedermayer and Edwards and Sokal generalizations
can be described in terms of our general scheme as weil.

To summarize, we have devised an extremely efficient
cluster Monte Carlo algorithm for the fully frustrated Is-
ing model on the square lattice. In order to develop the
new method, we introduced some new ideas that may be
useful for acceleration of simulations of frustrated sys-
tems in general. We have also presented a general
Monte Carlo scheme that satisfies the detailed balance
condition. It includes most previously developed cluster
algorithms as special cases, and may serve as a general
framework for developing new cluster acceleration tech-
niques.
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